
Range Camera for Simple behind Display Interaction 

Anton Treskunov, Seung Wook Kim, Stefan Marti 
Samsung Information Systems America (Samsung Electronics US R&D Center) 

300 Orchard Pkwy, San Jose, CA 95134, USA 
{treskunov, seungwook.k}@gmail.com; stefanm@media.mit.edu 

 
 

Abstract 

This paper presents a method to estimate hand 
positions behind a display, while the person’s body is 
in front of the display. This allows for direct and bare 
hand interaction with virtual objects in an AR setting. 
As a sensor, we use a time-of-flight range camera, 
which provides depth information per pixel, but is 
noisy. While hand tracking has previously been 
attempted by localizing body parts and fitting a body 
model into the data, we propose a simpler algorithm. 
We first remove outliers, and then model the hand as 
an oriented box whose position and orientation is 
determined by a PCA algorithm. The calculated hand 
model is then used in a physics engine based 
interaction with virtual content.  

1. Introduction 

Progress in the field of computer vision together 
with increases in raw processing power create an 
opportunity for new interaction methods with 
computers, making the human body the actual 
controller (as opposed to using traditional controllers 
like  keyboard, mouse, joystick etc.). Such a system 
needs to reliably and in real-time identify, locate, and 
track relevant parts of the user’s body. This task is 
made easier by a proliferation of range cameras that 
measure per-pixel distance (as opposed to light 
intensity and color). There is a growing body of 
research in body tracking using depth sensors, and 
commercial applications are starting to appear, such as 
the Microsoft Kinect. 

In general, applications that use body tracking in 
the user interface need to solve issues such as body 
self occlusion, how to isolate relevant body parts and 
discriminate between multiply people, as well as how 
to overcome hardware limitations that may result in 
noise and low resolution. 

However, in many cases the vision task could be 
simplified, particularly if the interaction happens in 
close range. We have developed a human computer 
interaction method where the user is located in front of 
a 3D display (implemented, i.e., as stereoscopic 

rendering on a transparent display), and interacts with 
a spatial environment by reaching with his hand 
behind the display. That way, the hand is spatially co-
located with real and virtual content and, at the same 
time, does not obscure the display surface. 

 

 
 

Figure 1. A screenshot of the interaction. A wall of 
dices is toppling over after colliding with a person’s 

hand, represented by two pink spheres; dots are filtered 
points from the range camera before outlier removal. 

 
We have found several ways to streamline the 

implementation. First, instead of precise localization 
and identification of body parts and guessing user 
intentions, we do a rough approximation of the 
interacting body parts as a low polygon model and 
check it for collision with CG content. A GPU 
accelerated physics engine handles collision detection. 
Second, in a situation where the user is located in front 
of the display, and his hand does manipulations behind 
the display, it is reasonable to assume that the camera 
sees only the manipulating hand of the user in front of 
a mostly static background. That assumption 
eliminates the need to identify and track body parts. 
The remaining pieces are hand localization, and 
approximating the hand as a volumetric body for the 
purpose of occlusion detection. This is a non-trivial 
task as depth sensor data is inherently noisy. 

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN4-31

160



Figure 2.  User is 
interacting with virtual 

content by reaching 
behind display. 

 
Figure 3. System side 

view: (a) transparent LCD 
panel; (b) depth camera; (c) 
Webcam. 

In the rest of this paper, we first will describe 
existing work in related domains, and give an 
overview of the hardware setup that we used. In the 
Algorithm section, we will describe steps to mitigate 
sensor noise by filtering outliers and to calculate a 
simple hand representation as an oriented bounding 
box. We will conclude with a list of further 
applications for our system. 

2. Related Work 

There is a rich research body in the domain of hand 
tracking: for example, Piekarski and Thomas in their 
2002 Tinmith-hand work [12] use fiducial marker 
detection via ARToolKit to perform 3 DOF tracking of 
the hands. Buchmann at al. [2] utilized fiducial marker 
tracking for hand and two fingers in their 2004 
FingARtips work. Instead of using flat markers, Wang 
and Popovic [16] used a multi-colored glove in their 
2009 paper. In 2005, Kölsch and Turk [8] described 
the HandVu hand tracking system. After explicit 
initialization, HandVu tracks the learned hand in the 
2D image plane using a non-stationary monocular 
color camera. The tracking was demonstrated to be 
robust against camera movements and arbitrary 
cluttered backgrounds. In 2007, the Handy AR work 
by Lee and Höllerer [10] tracked an outstretched hand 
in space by recognizing fingertips. Tracking is 
initialized with a calibration step in order to learn the 
hand geometry. The user’s palm is then used to place 
CG objects on it for AR applications. Lee at al. [9] in 
their 2008 work used skin tone based hand detection 
and 3D from stereo for hand tracking. However, they 
report “most of the users commented on the unstable 

fingertip tracking which sometimes affected their 
interaction.” 

There is also fast growing field of time-of-flight 
cameras [6] and its applications. As mentioned by 
Ghobadi at al.  [5], while “range images of TOF 
cameras are independent of the texture and lighting 
conditions, they are somehow affected by the color of 
the object.” In other words, and in accordance with 
our experience, they are quite noisy. Ghobadi at al. use 
a combination of range data with intensity image to 
separate hands from other body parts. Plagemann at al. 
[13] use a novel interest point descriptor together with 
a boosted patch classifier to localize body parts using 
range data. However, in our case body part 
segmentation is not necessary. 

3. Hardware setup and system overview  

Our demo system consists of interactive display 
hardware, as well as real-time 3D rendering and 
motion tracking software. The hardware platform 
includes a transparent LCD panel, a Webcam and a 
depth camera (a time-of-flight range camera by 
PMDTech) [14]. The software platform integrates the 
3D graphics engine OGRE [11] with our hand tracking 
algorithm and the commercial face tracker FaceAPI 
[4]. The transparent LCD panel exhibits a 
transparency of 10% when it displays entirely white 
color or when it is completely turned off. With 
sufficient illumination around the back region of the 
LCD panel, the user can see his hand through the 
translucent display (Figure 2). 

On the top part of the display, a depth camera is 
attached facing downward (Figure 3), toward where 
the user’s hand is located during the reaching-behind 
interaction we propose. Hand detection data, which is 
collected from the depth camera and processed 
through our algorithm described in the next section, is 
visualized as a virtual hand in the real-time 3D 
environment based on OGRE. When the virtual hand 
touches virtual objects in the 3D scene, the built-in 
physics engine simulates collision and gravity effects, 
providing the user with natural visual cues (Figure 1).  

To increase the reality of the interaction, the demo 
renders the 3D scene stereoscopically, so that virtual 
objects appear behind the transparent display, rather 
than on the display surface. Since our current 
transparent panel can render only at 60 Hz, we use 
anaglyphic stereoscopic rendering that require the user 
to wear red-cyan glasses.  

Due to the optical-see-through nature of the display, 
a CG scene should be registered with the real world 
behind the display to be convincingly augmenting it.  
In addition, using only stereoscopic rendering of 
content on a display surface confuses our visual 
perception mechanism because the lack of additional 
depth cues such as motion parallax.  

161



To improve accurate registration and to provide 
motion parallax depth cues, our demo system tracks 
the user’s face in real-time and adjusts the perspective 
of 3D scene accordingly. A Web camera (as shown in 
Figure 2) detects the user’s face with 30 fps and 
provides the scene renderer with 3DOF face position. 
The renderer then transforms and translates its 
viewing frustum for perspective correction. This view-
dependent rendering method allows that (1) the virtual 
content appears in place with reference to the physical 
background, and (2) the user experiences different 
perspectives of the 3D content as he moves around in 
front of the display.       

4. Hand Tracking Algorithm 

We use a tracking-by-detection approach with a 
frame-to-frame dependency. The remainder of this 
section describes the hand detection and localization 
procedures. 

Our demo implementation uses a time-of-flight 
(TOF) depth camera which provides a 200x200 pixel 
array of grey-level intensity, signal amplitude, distance, 
and calculated x,y,z coordinates. This data capture 
procedure is running in a separate thread, with a new 
frame being available every 45 ms. 

Because the camera is facing away from the user 
and sees only his hand, we do not need to detect body 
parts (as described by Plagemann et al. [13]), and can 
approximate foreground objects (i.e., a hand) with an 
oriented bounding box.  

Since the camera provides signal amplitude in 
addition to the pixel depth, we can reduce pixel noise 
with a simple amplitude threshold. Those weak pixels 
correspond to either a distant background, or to 
patches of bad infrared reflectivity. In a typical 
scenario, when the hand is 20 cm away from the 
camera, about 70% of the pixels have a weak signal 
and are discarded therefore. 

In the case of a static display, to avoid a recognition 
step, we assume that the background remains 
approximately static, and filter it out in a method 
similar to z-buffer. To this end, we accumulate the 
depth data for every pixel over 50 consecutive frames; 
assign some big depth number when the signal is weak, 
and collect minimal depth values per pixel. The 
procedure eliminates another 10% of all pixels.  

After a data frame is filtered based on amplitude 
(discard pixels with a weak signal) and background 
test, the remaining pixels form a point cloud, and 
statistical filtering is applied to eliminate isolated 
outliers. 

This technique is similar to Rusu et al. [15] and 
proceeds as follows. We use the ANN library [1] to 
form a KDD tree  and calculate the k nearest neighbors 
in 3D space for each point pi from the cloud. To 
mitigate small clusters of outliers, we ignore the first 

(nearest) k0 neighbors and store the average distance 
Di to the rest k – k0 ones. Then points with value Di too 
different from the rest are discarded as outliers. I.e., 
point pi is outlier if Di > D + ασ, where D is the mean 
of {Di}, and σ is a standard deviation. Coefficient α 
was set to 0.1 empirically; values k and k0 to 30 and 10 
respectively.  

The resulting points are clustered based on distance, 
and only the largest cluster is kept. For that step, we 
reuse neighbors the lists found in the previous step, so 
clustering is rapid. These two distance-based filtering 
steps remove about 30% of all points from the cloud. 
The contribution of the different filtering steps to the 
overall detection time is summarized in Table 1. 

However, the process of finding neighbors is 
computationally expensive and takes most of the 
algorithm time (see below). To keep the algorithm 
running in real-time, we down-sample the image 
before extracting the point cloud for statistical filtering 
and clustering. 

Table 1. Percentage of 3D points reported by  
range camera eliminated by filtering steps. 

Weak 
Background 
Outliers 

69% 
10% 

3% 

Total 82% 
 
To summarize, the following steps are involved in 
filtering the sensor data: 

1. Discard weak pixels 
2. Discard pixels failing z-test 
3. Down-sample 
4. Form point cloud 
5. Find nearest neighbors for each point 
6. Discard outliers based on average distance 
7. Cluster points based on mutual distance  
8. Keep the largest cluster 

 
Orientation and size of an approximating box are 

calculated using Principal Component Analysis (PCA) 
[7], using Eigen library [3]. PCA is performed over the 
remaining points. Eigenvectors of the covariance 
matrix define the box orientation. In case the matrix 
determinant is negative, we reverse the sign of the 
least significant Eigenvector.  The box size is 
approximated as zyx ,,6 � , where λx,y,z is the 

corresponding Eigenvalue, i.e. well-known ±3σ 
interval. Finally, for collision based interaction 
methods, we add two spheres on the opposite sides of 
the calculated box (Figure 1). 

Overall, hand detection and localization takes 22 ms 
on an Intel i7 CPU running at 2.8 GHz, with most of 
the computation used by step 5 in the filtering 
sequence, as summarized in Table 2. 

162



Table 2. Running time of the algorithm, in the case 
of a hand 20 cm from sensor, on a i7 CPU at 2.8GHz 

Weak & background filter 0.3ms 
Down-sampling 0.3ms 
KDD tree creation 1ms 
Neighbor search 20ms 
Clustering 0.3ms 
Total detection time 22ms 

5. Conclusion 

This paper has presented a method for tracking a 
person’s hand behind the display using a range camera. 
This setup allows for a simple but natural interaction 
method using bare hands with virtual objects in 
Augmented Reality applications. 

Instead of building a body parts model, the 
presented method relies on setup-imposed constraints, 
and models the hand as an oriented bounding box, 
which is used for a physics engine driven simulation. 
A performance evaluation shows that the algorithm 
runs in real-time on a modern PC, not requiring a 
powerful GPU module. 

Other applications for this method include gaming 
(direct interaction with game content, game characters, 
etc.), virtual worlds (e.g., real person shaking hands 
with avatars), telepresence (combining local and 
remote video and CG content, and manipulating 
remote content), CAD/CAM (direct manipulation of 
CG objects), medical imaging (navigating and 
manipulating interactive 3D medical image content), 
and many more. 

References 
[1] ANN: A Library for Approximate Nearest Neighbor 

Searching.  http://www.cs.umd.edu/~mount/ANN/  
accessed on April 7, 2011 

[2] Buchmann, V., Violich, S., Billinghurst, M., and 
Cockburn, A. (2004). FingARtips: gesture based direct 
manipulation in Augmented Reality. In Proc. Computer 
Graphics and Interactive Techniques in Australasia and 
South East Asia (GRAPHITE '04), Stephen N. Spencer 
(Ed.). ACM, New York, NY, USA, 212-221. 

[3] Eigen C++ template library 
http://eigen.tuxfamily.org/index.php?title=Main_Page 
accessed on April 7, 2011 

[4] FaceAPI, accessed on April 7, 2011 
http://www.seeingmachines.com/product/faceapi/  

[5] Ghobadi, S. E. , Loepprich, O. E. , Hartmann, K. , 
Loffeld, O. (2007). Hand Segmentation using 2D/3D 
Images. In Proc. Image and Vision Computing New 
Zealand, pp. 64–69, Hamilton, New Zealand, 
December 2007. 

[6] Gokturk, S., Yalcin, H., and Bamji, C. (2004). A time of 
flight depth sensor, system description, issues and 
solutions. In IEEE workshop on Real-Time 3D Sensors, 
2004. 

[7] Jolliffe, I. T. (1986). Principal Component Analysis. 
Springer-Verlag. pp. 487. doi:10.1007/b98835. ISBN 
978-0-387-95442-4. 

[8] Kölsch, M., and Turk, M. (2005). Hand Tracking with 
Flocks of Features. In Video Proc. CVPR IEEE 
Conference on Computer Vision and Pattern 
Recognition. 

[9] Lee, M., Green, R., Billinghurst, M. (2008). 3D Natural 
Hand Interaction for AR Applications. In Proc. 23rd 
International Conference Image and Vision Computing 
New Zealand, 26-28 Nov 2008 

[10] Lee, T. and Höllerer, T. (2007). Handy AR: Markerless 
Inspection of Augmented Reality Objects Using 
Fingertip Tracking. In Proc. IEEE International 
Symposium on Wearable Computers (ISWC), Boston, 
MA 

[11] Ogre3D Open Source 3D Graphics Engine 
http://www.ogre3d.org/  accessed on April 7, 2011 

[12] Piekarski, W. and Thomas, B. H. (2002). Using 
ARToolKit for 3D Hand Position Tracking in Mobile 
Outdoor Environments. In 1st Int'l Augmented Reality 
Toolkit Workshop, Darmstadt, Germany. 

[13] Plagemann, C., Ganapathi, V., Koller, D., Thrun, S. 
(2010). Real-time identification and localization of 
body parts from depth images. In Proc. of ICRA'2010, 
pp.3108-3113 

[14] PMDTec CamBoard http://www.pmdtec.com/products-
services/reference-design/ accessed on April 7, 2011 

[15] Rusu, R. B. , Marton, Z. C. , Blodow, N., Dolha, M., 
and Beetz, M. (2008). Towards 3D Point Cloud Based 
Object Maps for Household Environments.  In Robotics 
and Autonomous Systems Journal, Special Issue on 
Semantic Knowledge, 2008. 

[16] Wang, R.Y., and Popovic, J. (2009). Real-Time Hand-
Tracking with a Color Glove. In ACM Transaction on 
Graphics SIGGRAPH 2009, 28(3) 

 
 

163


