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Abstract

The purpose of this study is to investigate a varia-
tional method for joint 3-D motion segmentation and
estimation in a sequence of range images of a scene
containing moving rigid objects viewed by a possibly
moving camera. The objective functional contains two
terms. One term measures the conformity of the inter-
pretation within each region of 3-D motion segmenta-
tion to the range images sequence, and the other term
is for the regularity of segmentation boundaries. Min-
imization of the functional result in concurrent 3-D
motion segmentation by curve evolution, and 3-D mo-
tion by least squares within each region of segmenta-
tion. Curve evolution is implemented via level sets for
topology independence and numerical stability. Several
sequences of range image are provided which verify the
method and its implementation.

1 INTRODUCTION

Motion analysis remains a challenging and fundamen-
tal problem of computer vision, and plays several im-
portant roles such as estimation of motion, image seg-
mentation, movement detection and tracking. Within
the general context of motion analysis, 3D motion seg-
mentation and estimation is of considerable interest
for its methodological challenges and practical applica-
tions. It serves in domains such as medicine, robotics
and surveillance.
Intuitively, it seems obvious that 3-D motion segmen-
tation and estimation will be easier if we are given all
the three coordinates of the position vectors of image
points (as in range image) rather than two coordinates
(as in intensity images). However, because of the unre-
liability associated with range image motion segmen-
tation, the most widely used form of image in motion
segmentation so far has been the intensity image.
In the four last decades intensity images have gotten
more attention than other kinds of images, particularly
due to the good quality of intensity sensors. However,
the interpretation of intensity images is very difficult,
because they offer no explicit tridimensional (3-D) in-
formation. In order to overcome this problem several
techniques were developed: stereo-vision, shape from
shading, etc....
In parallel, a lot of different sensors have been greatly
enhanced, especially range sensors [1], [2], [3], [4], [5],
[6], the SR3000 camera and the new camera SR4000
which represent the 4th generation of time-of-flight
cameras designed by MESA in September 2008 [7].

Recent advances in range imaging technology make it
realistic and necessary to address the problem of 3-D
motion segmentation and estimation from a sequence
of range images.
The objective of this paper is to focus on the impor-
tant computer vision task of 3-D motion segmentation
and estimation in a range image sequence of a scene
containing moving rigid objects viewed by a possibly
moving camera. The problem is to segment the range
image domain into regions corresponding to differently
moving objects in space (3-D segmentation) and deter-
mine the motion of each object. For the problem we
are addressing, we will show that a variational formu-
lation can yield an efficient algorithm by encoding 3-D
motion segmentation and estimation in a single objec-
tive functional which embeds segmentation by active
curves.

2 BASIC MODELS

We will write the range flow motion constraint equa-
tion, to be used to gauge conformity of 3-D motion
field to image spatiotemporal data.

2.1 Range flow motion constraint equation

The depth can be viewed as a function of space and
time Z = Z(X ,Y,τ). Taking a full time derivative of Z
via the chain rule, we obtain the elevation rate con-
straint equation [8] also called range flow motion con-
straint equation RFMC [9],[10]:

dZ

dτ
=

∂Z

∂X

dX

dτ
+

∂Z

∂Y

dY

dτ
+

∂Z

∂τ
(1)

This can be written in the less intimidating form

ZXẊ+ZYẎ − Ż+Zτ = 0 (2)

Where ZX , ZY , Zτ are the partial derivative of Z with
respect to X , Y , τ respectively, and Ẋ , Ẏ , Ż are the
derivative with respect to the time of X , Y , and Z re-
spectively. let Ẋ =U , Ẏ = V , and Ż =W , then the 3D
velocity vector �f can be written as �f = [U V W ]T . The
range flow motion constraint equation RFMC become

ZX U + ZY V − W + Zτ = 0 (3)

In order to evaluate the RFMC equation we need to
compute partial derivatives of the depth function with
respect to the world coordinates. We use the approach
that uses derivative kernels presented in [11].

ZX =
YyZx−YxZy
YyXx−XyYx

=
Zx

Xx
(4)
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ZY =
XxZy−XyZx
YyXx−XyYx

=
Zy

Yy
(5)

Let T = (t1,t2,t3) be the translational component and
ω = (ω1,ω2,ω3) the rotational component of the mo-
tion of a regid body B in space. Let R= (X ,Y,Z)T ∈B
be a vector to a point on the surface, the velocity of R
is

dR

dτ
= T + ω×R (6)

which can be rewritten as{
U = t1 + ω2 Z − ω3 Y
V = t2 + ω3 X − ω1 Z
W = t3 + ω1 Y − ω2 X

(7)

Substituting these equation into the RFMC itself yields

ZXt1 +ZYt2− t3 + rω1 + sω2 + lω3 +Zτ = 0 (8)

Where r = −ZYZ − Y , s = ZXZ + X and
l = ZYX − ZXY which can be rewritten as

Zτ + A ·T + B ·ω = 0 (9)

where A and B are 3-D vectors given by

A=

(
ZX

ZY

−1

)
, B=

(
r
s
l

)
(10)

We will use this equation in the objective functional
(Next section) to express conformity of a 3-D motion
field to image spatiotemporal data.

2.2 Objective functional

Let Ir : Ω× ]0,τ[→R be an range image sequence func-
tion, acquired by a possibly moving viewing system.
Where Ω is an open subset of R

2 and τ is the duration
of the sequence. Let γ be a closed planar curve pa-
rameterized by arc parameter s ∈ [0,1], Ω1 the region
enclosed by γ, and Ω2 = ΩC1 . Each region Ωk is char-
acterized by its 3-D motion parameters (Tk,ωk). The
problem returns to segment each region and determine
its 3-D motion parameters. The problem can be stated
as the minimization of the following energy functional:

E
(

γ,{Tk}
2
k=1 ,{ωk}

2
k=1

)
=

2
∑
k=1

∫
Ωk

ψ2
k(X ,Y )dXdY + λ

∮
γ
dS

(11)

Where
ψk(X ,Y ) = Zτ +A.Tk+B.ωk (12)

And λ is positive real constant to weigh the contribu-
tion of the terms in (11). The first integral in (11)
measures conformity of the 3-D motion field to the se-
quence spatiotemporal variations in Ωk via range flow
motion constraint equation. The second term is reg-
ularization term of smoothness of γ. Our problem re-
turns to minimize the functional (11) simultaneously
with respect to γ, and to 3-D motion parameters.

3 FORMULATION AND ALGORITHM
FOR TWO REGIONS

Since the objective functional (11) depends on two
groups of variables, namely, the segmentation bound-
aries γ, and 3-D rigid motion parameters T1,T2,ω1,ω2,
we will adopt a greedy algorithm which, after initial-
ization, consists of two iterated steps. At each step,
we fix one of the two groups of variables and solve for
the other group of variables.

3.1 Initialization

An initial set of one curve provide the two-region initial
segmentation.

3.2 Step1. 3-D Motion estimation by least-
squares

With γ fixed, the energy to minimize is

E
(
{Tk}

2
k=1 ,{ωk}

2
k=1

)
=

2

∑
k=1

∫
Ωk

ψ2
k(X ,Y )dXdY (13)

Since ψk depends linearly on Tk and ωk, k ∈ {1,2}, the
minimization of (13) reduces to the linear least-squares
estimation of the parameters within each region. In
the discrete case of digital images, this estimation is
done as follows. Let Nk be the number of points of the
image positional array within region Ωk, k ∈ {1,2}, and
let m be the 1×6 vector associated to each point of the
image. referred to equation (9 and 10) we write m as

m(zi) = (ZX ,ZY ,−1,r,s, l)zi . (14)

The index zi under the right bracket means that all
vector elements are evaluated at point zi. We write (9)
for each point zi in the region Ωk to obtain the linear
system

Mkρk = nk k= 1,2 (15)

where ρk = (Tk,ωk)
T is the 6× 1 vector representing

the six-dimensional rigid motion components of region
Ωk (three for translation and three for rotation). The
Nk×6 matrix Mk and the Nk×1 vector nk are defined,
respectively, as follows:

Mk =

⎛
⎜⎝

m(z1)
...

m(zNk )

⎞
⎟⎠ nk =

⎛
⎜⎝

−Zτ(z1)
...

−Zτ(zNk )

⎞
⎟⎠k= 1,2 (16)

An effective method to solve the overdetermined linear
system (15) is a singular value decomposition of matrix
Mk. And ρk is updated by the least-squares solution
vector of this system.

3.3 Step2. Curve evolution by level sets for 3-D
motion segmentation

With the 3-D rigid motion parameters (Tk,ωk)
2
k=1 fixed,

the energy to minimize with respect to the curve γ is

E(γ) =
2

∑
k=1

∫
Ωk

ξk (X ,Y )dXdY + λ
∮
γ

ds (17)
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where ξk (X ,Y ) = ψ2
k (X ,Y ). To obtain their evo-

lution equation, curve γk is embedded in a family
of one-parameter curve. Let γ be parameterized by
γ(s,τ) : [0,1]× [0,+∞[ �→ℜ. Following [12], [13], we ob-
tain the following functional derivatives for the evolu-
tion of γ:

∂E

∂γ
=
(
ξ1− ξ2 + λκγ

)
n (18)

with corresponding Euler-Lagrange descent equations

dγ

dτ
(s,τ) = −

(
ξ1 (γ(s))− ξ2 (γ(s))+ λκγ (γ(s))

)
×n(γ(s)) (19)

where the dependence on τ is left implicit for sim-
plicity, κγ is the mean curvature function of γ, n is the
outward unit normal function to the curve γ.

3.4 Level-set implementation

For the implementation of equation (19), we use the
level set formulation which is known for his numerical
stability and topology independence [14]. In this for-
mulation the evolving curve γ is implicitly represented
by the zero level set of a function Φ : Ω×ℜ+ �→ ℜ.
With the convention that Φ > 0 inside the zero level
set γ. One can show [14] that, if the evolution of a
curve γ is described by the equation

dγ

dτ
(s,τ) = F (γ(s))n (20)

Where F is a real-valued function defined on ℜ2, then
the evolution of the corresponding level set function Φ
is given by

∂Φ

∂τ
(X ,Y,τ) = F (X ,Y ) ‖ ∇Φ(X ,Y ) ‖ (21)

In our case, the level set function evolution equation
corresponding to (19) is given by

∂Φ

∂τ
(X ,Y,τ) = −(ξ1 (X ,Y )− ξ2 (X ,Y )+ λκΦ (X ,Y ))

‖ ∇Φ(X ,Y ) ‖ (22)

where the curvature function κΦ is given by
κΦ = div

(
∇Φ
/
‖ ∇Φ ‖

)
.

4 GENERALIZATION TO MULTIPLE
REGIONS

Segmentation into N > 2 regions uses several active
curves, can occur ambiguities when the interiors of two
or more curves overlap. To guarantee that the curves
define a partition of the image domain Ω, several so-
lutions have been proposed in [15], [16], [17] and [18].
For instance, [17] uses:

∂Ek
∂γk

=
(
ξk−ϕk+ λκγk

)
nk, k = 1, ...,N−1 (23)

with corresponding Euler-Lagrange descent equa-
tions

∂γk
∂τ

(s,τ) = −
(
ξk(γk(s))−ϕk(γk(s))+ λκγk(γk(s))

)
×nk(γk(s)), k = 1, ...,N−1 (24)

where κγk is the mean curvature of γk, nk is the exte-
rior unit normal function to curve γk, and function ϕk
are defined by

ϕk(γk(s)) = min
i�=k

ξi(γk(s)). (25)

5 EXPERIMENTAL VERIFICATION

We ran several experiments to validate the approach
and its implementation. We present four examples us-
ing two frames of each sequence. The use of a larger
number of frames may improve results.
The first example uses the Aftershaver range image se-
quence which we constructed with a real range image of
an after shave bottle from the Ohio State University
(OSU/MSU/WSU Range Image Database) and syn-
thetic motion. The object image motion causes one
pixel motion in direction of X and one pixel in direc-
tion of Y . The derivatives were computed using parallel
projection. There is no background motion. The first
of the two frames used is shown in Figure 1(a) with the
initial curve of segmentation; the final segmentation is
shown in Figure 1(b).
The second example uses the CubeRotating range im-
ages sequence taking with the SR3000 camera (Mesa
Imaging AG, Switzerland). This is a noisy real se-
quence taken by holding the camera in the hand. There
were slight hand movements which caused slight cam-
era pose movement in addition to the rotation of the
cube. The first of the two frames used is shown in Fig-
ure 2(a) with the initial curve; the final segmentation
is shown in Figure 2(b).
The third and fourth examples use the real Conics and
Chessmen range images and synthetic motion. These
images were taken with K2T structured light camera
images in the Vision lab at the University of South
Florida. In the first example we have four objects but
only two objects move. Motion of the first object on
the right (egg-like) image motion corresponds to two
pixels in direction of Z. The motion of the third object
from the right (cylinder) corresponds to an image mo-
tion of one pixel in direction of Y . There is no back-
ground motion. The first of the two frames used is
shown in Figure 3(a) with the two initial curves; the
final segmentation is shown in Figure 3(b). The seg-
mentation delineates closely the two moving objects.
In the second example we have six objects but only
three objects move. Motion of the knight corresponds
to two pixels in direction of Z. The bishop motion
corresponds to one pixel in direction of X , that of the
king to one pixel in direction of Y . There is no back-
ground motion. The first of the two frames used is
shown in Figure 4(a) with the three initial curves, the
final segmentation is shown in Figure 4(b). Here again
the segmentation is accurate.

6 CONCLUSION

We investigated a variational, active curve evolution
and level set method to segment multiple independent
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(a) (b)

Figure 1: (a) The first frame of Aftershaver range images
sequence and initial level set; (b) The computed 3-D motion
segmentation.

(a) (b)

Figure 2: (a) The first frame of CubeRotating sequence and
initial level set; (b) The computed 3-D motion segmenta-
tion.

(a) (b)

Figure 3: (a) The first frame of Conics sequence and initial
level set; (b) The computed 3-D motion segmentation.

(a) (b)

Figure 4: (a) The first frame of chessmen sequence and ini-
tial level set; (b) The computed 3-D motion segmentation.

3-D motions and simultaneously infer 3-D motion es-
timation in temporal sequences of range images. The
corresponding EulerLagrange descent equations led to
an algorithm which, after initialization, iterated two
consecutive steps, namely, computation of rigid 3-D
motion parameters by least squares, and curve evolu-
tion by level sets PDEs. The algorithm and its imple-
mentation have been validated on several range image
sequences.
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