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Abstract
We present a new method for optimally computing the

3-D rotation from two sets of 3-D data in the presence of
inhomogeneous and anisotropic noise. Following Ohta and
Kanatani, we adopt the quaternion representation of 3-D
rotation and compute an exact maximum likelihood solu-
tion using the FNS of Chojnacki et al. Then, the uncer-
tainty of 3-D reconstruction by stereo vision is analyzed,
and the 3-D rotation is optimally computed. We show that
the renormalization of Ohta and Kanatani indeed computes
almost an optimal solution and that the proposed method
can compute an even better solution.

1. Introduction

The task of autonomous robots to reconstruct the
3-D structure of the scene using stereo vision and si-
multaneously compute its location in the map of the
environment is called SLAM (Simultaneous Localiza-
tion and Mapping). One of the fundamental techniques
for this is to compute the 3-D motion (translation
and rotation) of the robot between two time instances.
This information is acquired by computing the 3-D mo-
tion of the scene relative to the robot. Translation is
easily computed by the time change of the centroid of
the 3-D points that the robot is tracking. However,
rotation is no so easy to compute, because 3-D data,
unlike 2-D data, necessarily have inhomogeneous and
anisotropic noise originating from the nature of 3-D
sensing.

Similar problems occur in reconstructing the entire
3-D object shape using 3-D sensing. We need multiple
sensors, because each sensor can reconstruct only the
part that is visible from it. In order to obtain the entire
3-D shape, we need to integrate multiple 3-D parts
reconstructed from different sensors. However, each
sensor has different noise characteristics, depending on
its type, position and orientation.

Optimal 3-D rotation estimation has been exten-
sively studied since 1980s [1, 3, 5, 6, 8, 17], but al-
most all proposed algorithms assume homogeneous and
isotropic noise. However, the assumption of homoge-
neous and isotropic noise is unrealistic to 3-D data,
because 3-D data are acquired by 3-D sensing such as
stereo vision and laser/ultrasonic range finders; their
accuracy is different in the depth direction and in the
direction orthogonal to it, resulting in an inhomoge-
neous and anisotropic noise distribution.

It is Ohta and Kanatani [16] who first pointed out
the inevitable inhomogeneity and anisotropy of the
noise in 3-D data and presented a 3-D rotation esti-
mation scheme that takes it into account. They used
a technique called renormalization, which iteratively
removes statistical bias of reweight least squares by
doing detailed statistical error analysis [9]. However,
although the renormalization solution is guaranteed to
have the same order of accuracy as maximum likeli-
hood (ML), it may not exactly coincide with the exact
ML solution. Later, Chojnacki et al. [2] proposed an
iterative scheme, called FNS (Fundamental Numerical
Scheme), similar to renormalization but able to com-
pute an exact ML solution. The same solution can
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Figure 1. Geometry of 3-D rotation.

be obtained by the HEIV (Heteroscedastic Errors in
Variable) of Leedan and Meer [14] and Matei and Meer
[15] as well.

In this paper, following Ohta and Kanatani [16], we
adopt the quaternion representation of 3-D rotation to
derive a scheme for computing an exact ML solution
using the FNS of Chojnacki et al. [2]. Analyzing the
uncertainty of 3-D stereo reconstruction, we optimally
estimate the 3-D rotation and compare the result with
the theoretical accuracy limit called the KCR lower
bound [9, 10]. It is found that the renormalization of
Ohta and Kanatani [16] indeed produces almost an op-
timal solution and that our new method can compute
a slightly more accurate solution.

2. Quaternion Representation of 3-D Rotation

If a point r rotates around an axis l (unit vector)
by angle Ω (radian) screwwise to r′, the geometry of
rotation implies the following relationship (Fig. 1):

r′ − r = 2 tan
Ω
2

l × r + r′

2
. (1)

This is rewritten as

q0(r′ − r) − ql × (r′ + r) = 0, (2)

where we define

q0 = cos
Ω
2

, ql = l sin
Ω
2

. (3)

This definition implies q2
0 + ‖ql‖2 = 1. Hence, a 3-D

rotation is specified by a unit 4-D vector

q =
(

q0

ql

)
, (4)

which is known as the quaternion1. Given a quater-
nion q, the angle Ω and the axis l of the rotation it
represents are given by2

Ω = 2 cos−1 q0, l = N [ql], (5)
1Mathematically, q is called a “quaternion” when associated

with its algebra, i.e., the rule of composition [7]. However, the
quaternion algebra does not play any role in this paper.

2If Ω is very small, the use of Ω = 2 sin−1 ‖ql || provides a
numerically stabler solution.
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where N [ · ] denotes normalization into unit norm. In
the following, we define the product a×T of a vector a
and a matrix T as the matrix whose three columns are
the vector products of a and the respective columns of
T . From this definition, we see that for a vector a =
(ai) and the unit matrix I

a × I =

( 0 −a3 a2

a3 0 −a1

−a2 a1 0

)
. (6)

It is easy to see the identities (a × I)b = a × b and
(a × I)T = a × T for any vectors a and b and any
matrix T . Hereafter, we abbreviate T (a×I)� to T×a.

3. Optimal Rotation Estimation

Suppose we have measurement data of 3-D positions
rα before rotation and their positions r′

α after rota-
tion, α = 1, ..., N . We model measurement inaccu-
racy by Gaussian noise and assume that the covariance
matrices of rα and r′

α are ε2V0[rα] and ε2V0[r′
α], re-

spectively, where ε, which we call the noise level , rep-
resents the magnitude of the noise, while V0[rα] and
V0[r′

α], which we call the normalized covariance ma-
trices, describe directional characteristics of the noise
distribution. Optimal estimation in the sense of max-
imum likelihood (ML) is to minimize the Mahalanobis
distance (the multiplier 1/2 is merely for convenience)

J =
1
2

N∑
α=1

(rα − r̄α, V0[rα]−1(rα − r̄α))

+
1
2

N∑
α=1

(r′
α − r̄′

α, V0[r′
α]−1(r′

α − r̄′
α)), (7)

with respect to r̄α, r̄′
α subject to

q0(r̄′
α − r̄α) − ql × (r̄′

α + r̄α) = 0, (8)

for some q0 and ql. Throughout this paper, we denote
the inner product of vectors a and b by (a, b). In-
troducing Lagrange multipliers, we can eliminate the
above constraint and rewrite Eq. (7) in the following
form (see [12] for the derivation):

J =
1
2
(q,Mq). (9)

Here, M is the 4 × 4 matrix given by

M =
N∑

α=1

X�
α W αXα, (10)

and Xα is the 3 × 4 matrix defined to be

Xα = ( r′
α − rα (r′

α + rα) × I ) . (11)

The matrix W α is the inverse of the following 4 × 4
matrix V α, i.e., W α = V −1

α :

V α = q2
0(V0[r′

α] + V0[rα]) − 2q0S[ql × (V0[r′
α]

−V0[rα])] + ql × (V0[r′
α] + V0[rα]) × ql. (12)

This is the formulation first introduced by Ohta and
Kanatani [16].

4. Optimization Procedure

Ohta and Kanatani [16] estimated the ML solution
by a technique called renormalization. Theoretically,
the renormalization solution has the same order of ac-
curacy as ML, i.e., the leading term of the expansion
of the error in the noise level is the same in expec-
tation [9, 10]. However, the renormalization solution
may not exactly coincide with ML solution. Here, we
directly minimize Eq. (9). After a rather lengthy com-
putation (see [12] for the derivation), the derivative of
J in Eq. (9) with respect to q is written in the form

∇qJ = Mq − Lq, (13)

where L is the 4 × 4 matrix given by

L =
N∑

α=1

(
(pα, (V0[r′

α] + V0[rα])pα)
pα × (V0[r′

α] − V0[rα])pα

(pα × (V0[r′
α] − V0[rα])pα)�

pα × (V0[r′
α] + V0[rα]) × pα

)
. (14)

Here, pα is the 4-D vector given by

pα = W αXαq. (15)

Our task is to compute the unit vector q that makes
Eq. (13) 0, for which we can use the FNS of Chojnacki
et al. [2]. The FNS procedure goes as follows:

1. Compute the matrices Xα in Eq. (11) from rα

and r′
α and provide an initial guess of q.

2. Compute the matrices V α in Eq. (12) and W α

= V −1
α , and compute the matrix M in Eq. (10),

the vectors pα in Eq. (15), and the matrix L in
Eq. (14).

3. Solve the eigenvalue problem

(M − L)q′ = λq′, (16)

and compute the unit eigenvector q′ for the small-
est eigenvalue λ. If q′ ≈ ±q, return q′ and stop.
Else, let q ← q′, and go back to Step 2.

The simplest choice for the initial guess of q is, as done
in [16], the use of the unit eigenvector q of the matrix

M0 =
N∑

α=1

X�
α Xα (17)

for the smallest eigenvalue.

5. Covariance Matrix Evaluation

The covariance matrix of a 3-D position recon-
structed by stereo vision can be evaluated as follows.
Let (x, y) and (x′, y′) be the corresponding points in
the two images. We represent them as 3-D vectors

x =

(
x/f0

y/f0

1

)
, x′ =

(
x′/f0

y′/f0

1

)
, (18)

where f0 is an appropriate scale constant for stabilize
finite length computation. These two points should
satisfy the epipolar equation [4], but in the presence of
noise it is not exactly satisfied. So, we correct x and
x′, respectively, to x̂ and x̂′ that exactly satisfy the
epipolar equation in an optimal manner (see [9, 13] for
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the procedure). The normalized covariance matrices
V0[x̂] and V0[x̂

′] and the normalized correlation matri-
ces V0[x̂, x̂′] and V0[x̂

′, x̂] are given as follows [9, 11]:

V0[x̂] =
1
f2
0

(
P k − (P kF x̂′)(P kF x̂′)�

‖P kF x̂′‖2 + ‖P kF�x̂‖2

)
,

V0[x̂
′] =

1
f2
0

(
P k − (P kF�x̂)(P kF�x̂)�

‖P kF x̂′‖2 + ‖P kF�x̂‖2

)
,

V0[x̂, x̂′] =
1
f2
0

(
− (P kF x̂′)(P kF�x̂)�

‖P kF x̂′‖2 + ‖P kF�x̂‖2

)
= V0[x̂

′, x̂]�. (19)

Here, F is the fundamental matrix determined by the
two stereo cameras and P k ≡ diag(1, 1, 0).

From the corrected x̂ and x̂′, the corresponding 3-D
position r̂ is uniquely determined. Its normalized co-
variance matrix V0[r̂] has the following form (see [12]
for the derivation):

V0[r̂] = A−1B

(
V0[x̂] V0[x̂, x̂′]

V0[x̂
′, x̂] V0[x̂

′]

)
B�(A−1)�,

(20)

A ≡ ‖x̂‖2P̃
�

PN [x̂]P̃ + ‖x̂′‖2P̃
′�

PN [x̂′]P̃
′
,

B ≡
(
P̃

�(
(x̂, PX̂)I − (PX̂)x̂�

P̃
′�(

(x̂′, P ′X̂)I − (P ′X̂)x̂′�
))

. (21)

Here, X̂ ≡
(

r̂
1

)
, and P is the projection matrix of

the first image defined by

P =

(
f/f0 0 0

0 f/f0 0
0 0 1

)(
R� −R�t

)
, (22)

where R and t are the rotation and the translation of
the first camera relative to the world coordinate system
and f is its focal length. The aspect ratio is assumed
to be 1 with no image skews, or so corrected by prior
calibration. The projection matrix P ′ of the second
camera is similarly defined. In Eq. (21), the matrices
P̃ and P̃

′
are the left 3 × 3 submatrices of P and P ′,

respectively, and we define

PN [x̂] ≡ I −N [x̂]N [x̂]�, (23)

and PN [x̂′] similarly defined.

6. Experiments

A curved grid surface is rotated by angle 10◦ around
an axis passing through the world coordinate origin O,
and the 3-D position of each grid point is measured
before and after the rotation by stereo vision (Fig. 2).
The grid is placed with its center at the origin O, and
the two cameras are placed so that their lines of sight
meet at O with angle 10◦. Figure. 3 shows simulated
images of the grid surface before and after the rotation.
The image size is 500×800 pixels, and the focal length
is set to 600 pixels. Gaussian noise of mean 0 and
standard deviation σ pixels is independently added to
the x and y coordinates of the grid points in the images,
and their 3-D positions before and after the rotation
are reconstructed by the method of Kanatani et al. [13].

Figure 2. 3-D measurement of a grid point by stereo
vision and its uncertainty ellipsoid.

Before rotation

After rotation

Figure 3. Simulated stereo images of the grid before
and after the rotation.

Evaluating the normalized covariance matrix V0[r̂α]
in Eq. (20), we find that the uncertainty distribution
has an ellipsoidal shape elongated in the depth direc-
tion, as illustrated in Fig 2. The ratio of the radii is,
on average over all the points, 1.00 : 1.685 : 5.090 in
the vertical, horizontal, and depth directions, respec-
tively, meaning that the error in the depth direction
is approximately five times as large as in the vertical
direction. We actually measured this ratio by adding
noise to the images many times and found that it is
about 1.00 : 1.686 : 5.095, a very close value to the
prediction by Eq. (20).

Using the thus predicted normalized covariance ma-
trices V0[r̂α] and V0[r̂

′
α] before and after the rotation,

we evaluated the deviation the computed quaternion q̂
from its true value q̄ by

Δq = P q̄q̂, P q̄ ≡ I − q̄q̄�. (24)

Since q̂ is a unit vector, it is on a 3-D sphere S3 in 4-D
near q̄. We are interested only in the error component
Δq of q̂ orthogonal to q̄, because there is no devia-
tion in the direction of q̄ (Fig. 4). The matrix P q̄ in
Eq. (24) orthogonally projects q̂ onto the tangent plane
to S3 at q̄. After 1000 independent trials using differ-
ent nose each time, we evaluated the root-mean-square
(RMS) error

E =

√√√√ 1
1000

1000∑
a=1

‖Δq(a)‖2, (25)

where Δq(a) is the ath value. The theoretical accuracy
limit, called the KCR lower bound [9, 10], is given by

EKCR = σtr
( N∑

α=1

X̄
�
α W̄ αX̄α

)−
, (26)
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Figure 4. The component Δq of the computed
quaternion vector q̂ orthogonal to its true value q̄.

Figure 5. The RMS error of the computed rotation
vs. the standard deviation σ of the noise added to
the stereo images. The dotted line shows the KCR
lower bound. 1. Optimal estimation assuming homo-
geneous isotropic noise. 2. Renormalization. 3. Pro-
posed method.

where X̄α and W̄ α are, respectively, the values of Xα

and W α when q, rα and r′
α in their defining equations

are replaced by their true values q̄, r̄α, and r̄′
α, respec-

tively. The operation ( · )− means the psueudoinverse,
and tr denotes the matrix trace.

Figure 5 plots the RMS error E for the standard
deviation σ of the noise added to the stereo images,
and the dotted line shows the KCR lower bound. We
compared three methods:

1. The optimal method for homogeneous isotropic
noise [1, 3, 5, 6, 8, 17].

2. The renormalization of Ohta and Kanatani [16].
3. The proposed method.

We can immediately see that the well known method
for homogeneous isotropic noise performs very poorly.
In contrast, the renormalization of Ohta and Kanatani
[16] is confirmed to be highly accurate, nearly reaching
the KCR lower bound. Yet, our proposed method is
even better, although the difference is very small.

7. Conclusions

We have presented a new method for optimally com-
puting the 3-D rotation from two sets of 3-D data.
Unlike 2-D data, the noise in 3-D data is inherently in-
homogeneous and anisotropic, reflecting the 3-D sens-
ing procedure. Following Ohta and Kanatani [16], we
adopted the quaternion representation of 3-D rotation
and derived a numerical procedure for computing an
exact ML solution using the FNS of Chojnacki et al. [2].
We analyzed the uncertainty of 3-D reconstruction by
stereo vision and optimally computed the 3-D rotation.
It was shown that the widely used method, which as-
sumes homogeneous and isotropic noise, is not suitable
for 3-D data. We found that the renormalization of
Ohta and Kanatani [16] indeed computes almost an
optimal solution and that, although the difference is

small, the proposed method can compute an even bet-
ter solution. Our finding has a theoretical significance,
in particular in situations where high accuracy is re-
quired.
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