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Abstract

We present a novel approach to detect common vi-
sual patterns between image pairs. We use a parti-
cle filtering approach as a detector of possibly multiple
similar visual patterns rather than as a visual tracker.
Our method doesn’t require a learning phase in advance
but leverages only the information from given two im-
ages. A detector is a set of bounding boxes (or parti-
cles) which are located initially at random on each im-
age. A set of bounding boxes on an image is updated
based on both their current states and the observation
of counterparts on another image through a particle
filtering framework. A bounding box will include some
feature points of the image and the similarity between
two boxes can be calculated by the number of corre-
sponding points. This similarity defines a likelihood
model. The state of two sample sets should be updated
to move toward the locations of common patterns in
turn. To handle multiple instances, we adopt an algo-
rithm of the mixture particle filter. In the experiments,
we demonstrate the validity of our method on common
visual pattern detection.

1 Introduction

Finding correspondences is one of the fundamental
problems in computer vision and becomes an essential
part of many applications such as image categorization
[1], scene alignment [2], video segmentation [3], and
object tracking [4].

Figure 1 shows a pair of images in which there are
some common objects whose positions and poses are
different, respectively. Although some effective im-
age descriptors have been proposed [5, 6, 7], the task
of common pattern detection from such kind of im-
age pairs is very challenging. Because there are many
ambiguous points and background clutters which may
cause mismatching even by modern visual descriptors.
Common visual pattern discovery has attracted much
attention [8, 9, 10, 11].

In this paper, we derive our method to detect com-
mon patterns from the particle filtering framework
[12] which can be seen as a detector rather than as
a tracker. In the computer vision literature, the par-
ticle filters, or more generally, sequential Monte Carlo
methods, have provided successful results in the prob-
lem of tracking objects [13, 14] and have recently been
applied to multiple object detection [15].

2 Proposed approach

2.1 Overview

Given two images I and J , we extract a set of visual
primitives from each image which can be described as

(a) (b)

Figure 1. Detection of common visual patterns.

V = {v1, . . . , vm}. Each visual primitive is denoted by
v = (x, y,f) where (x, y) is its location and f ∈ R

d is
its feature vector. The number of primitives depends
on each image.

Our detector is composed of a set of bounding
boxes B = {B1, . . . , BM} where each bounding box
B = (cx, cy, sxlx, syly) is characterized by the cen-
ter (cx, cy), scale factors sx, sy, and (fixed) width and
height lx, ly, respectively. The state of the bounding
box is represented by a vector x = [cx, cy, sx, sy]

T . The
region covered by the bounding box is denoted by RB .
The bounding box B may include a set of visual primi-
tives which are denoted by VB = {v ∈ V|(x, y) ⊂ RB}.
Our algorithm is summarized as follows:

Initialization The centers of bounding boxes
are initialized at randomly selected feature points and
their sizes are altered by randomly selecting scale fac-
tors from a pre-defined range. A set of bounding boxes
are distributed within each image. Figure 2 shows the
locations of visual primitives and a few examples of
bounding boxes including some primitives on the im-
age.

Update and estimation The bounding boxes
located on one image referred to as “target”, are up-
dated given the observations of the bounding boxes on
the other image referred to as “reference”. Although
both given images are static, the observations dynam-
ically change due to the iterative update of the states
of the bounding boxes which cover the different rect-
angular areas each time. This is the reason why we
choose the particle filtering framework to detect com-
mon visual patterns from static images.

The following procedures are iteratively conducted
swapping their roles of target and reference.

1. The similarity measure of the bounding boxes
between the target and reference is evaluated.
In fact, the bounding boxes of the reference are
grouped by some clustering algorithm, and the av-
erage bounding boxes integrated within each clus-
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Figure 2. Locations of visual primitives and a few
examples of bounding boxes including some prim-
itives (best viewed in color).

ter are used instead of all the bounding boxes in
the reference.

2. In the particle filtering framework, the weights of
the bounding boxes in the target are updated by
regarding the similarity measure as the likelihood,
and the states of them are moved according to
a suitable dynamic model. Furthermore, because
we adopt the mixture particle filter, the mixture
coefficients should be updated.

Confidence map Finally, the particle weights
are accumulated in the corresponding bounding boxes
over a confidence map to evaluate the confidence in the
presence of common patterns within bounding boxes.
The higher the value at a point in the map is, the more
likely a common pattern exists there. Some common
patterns can be found by simply thresholing the values
in the confidence map or by more sophisticated meth-
ods such as Hough transforms [16].

2.2 Evaluation of bounding boxes

We can evaluate the similarity between two bound-
ing boxes which are located on separate images as fol-
lows. Let Bi denote a bounding box located on the
image I and Bj on the image J , respectively. For
each primitive u ∈ VBj

within the bounding box Bj ,
the ε nearest neighbors in the feature space can be de-
fined as its match set Mu = {v ∈ VI |‖fu − fv‖ ≤ ε}
where VI is a set of visual primitives extracted from
the image I [9]. This is illustrated in Fig. 3. To evalu-
ate the similarity between Bi and Bj , we use the same
(approximate) measure proposed in [9]:

S̃im (Bi, Bj) = |VBi∩MBj |, MBj =
⋃

u∈VBj

Mu. (1)

By using this similarity measure, we define the likeli-
hood by Eq. (2) so that the bounding box can capture
some common pattern:

li = max
Bj∈BJ

S̃im (Bi, Bj) , i = 1, . . . ,M (2)

Figure 3. ε nearest neighbors in the feature space
are defined as the match set.

(a) Target (b) Reference;

S̃im = 80

(c) Reference;

S̃im = 2

Figure 4. Example of matching results. A bound-
ing box which covers some common pattern takes
a higher similarity measure.

where BJ is a set of bounding boxes located on the
image J . As shown in Fig. 4, when the bounding box
Bi on the image I covers some region which is similar
to, or has a common visual pattern with, the region on
the other image J , a cardinality in Eq. (1) and also
its likelihood in Eq. (2) becomes high.

2.3 Iterative update

The likelihoods of the bounding boxes can be eval-
uated as described above. We use the particle filter
to update their states iteratively so that a bounding
box on one image can cover a similar region as the
corresponding bounding box on the other image. Our
aim is to estimate iteratively the filtering distribution
p (xt|yt) where xt denote the state of a bounding box
and yt = (y1 · · ·yt) the observations up to iteraton t.
Unlike usual particle filters, t doesn’t mean time but
an iterative step in our approach.

At an iterative step t, given the set of bounding

boxes {x(i)
t−1, w

(i)
t−1}Mi=1 which are properly weighted

samples, the particle weights {wi
t}Mi=1 are related with

the likelihoods in Eq. (2) and are updated to maintain
properly weighted samples as follows:

w̃
(i)
t = w

(i)
t−1lt,i, w

(i)
t =

w̃
(i)
t∑M

j=1 w̃
(j)
t

. (3)
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The state of a bounding box is moved from the current
state according to a suitable dynamic model. Here
we suppose the proposal distribution is same as the
dynamic model.

Mixture particle filter Unfortunately the par-
ticle filters tend to fail in the approximation of a mul-
timodal distribution in which multiple modes exist be-
cause multiple common patterns appear within given
images or because there are ambiguous regions due
to background clutter. To overcome this drawback,
the mixture particle filter [17] has been proposed such
that the filtering distribution is formulated as a K-
component mixture model:

p
(
xt|yt

)
=

K∑
k=1

πk,tpk
(
xt|yt

)
. (4)

Each mixture component can be composed of par-
ticles grouped by an appropriate clustering algorithm
and is represented as a set of indices of the particles

belonging to it: Lk = {i ∈ {1, . . . ,M}|c(i)t = k}, k =

1, . . . ,K where c
(i)
t ∈ {1, . . . ,K} are the component

indicators. Each mixture component evolves indepen-
dently, and therefore, the particle weights can be up-
dated in a similar way as in Eq. (3) by

w̃
(i)
t = w

(i)
t−1li, w

(i)
t =

w̃
(i)
t∑

j∈Lk
w̃

(j)
t

. (5)

The interaction among the mixture components can be
seen only in the computation of mixture coefficients:

πk,t =
πk,t−1w̃k,t∑K
l=1 πl,t−1w̃l,t

, w̃k,t =
∑
i∈Lk

w̃
(i)
t . (6)

The mixture representation should be recomputed af-
ter a reclustering procedure as

π′k,t =
∑
i∈L′

k

π
c
(i)
t ,t

w
(i)
t , w

′(i)
t =

π
c
(i)
t ,t

w
(i)
t

π′
c
′(i)
t ,t

. (7)

To avoid the degeneracy problem, a resampling algo-
rithm is required [12].

Dynamic model For the center of a bounding
box, we use the dynamic model which is inspired by
a competitive learning such as Self-Organizing Maps
(SOM) [18] or simulated annealing [19]. To avoid get-
ting stuck in local minima, and to arrive and stay at
the minimum, we use a simple annealing schedule for
the dynamic model of the centers:

cx,t ∼ N
(
cx,t−1, σ

2
t

)
, cy,t ∼ N

(
cy,t−1, σ

2
t

)
, (8)

σt = σ0/(1 + κ(t/T )) (9)

where N (
μ, σ2

)
denotes the Gaussian distribution

with mean μ and variance σ2 and T is the number
of iterative steps to be conducted.

We use the following dynamic model for the scale
factors of a bounding box:

sx,t ∼ N
(
sx,t−1, σ

2
s

)
, sy,t ∼ N

(
sy,t−1, σ

2
s

)
(10)

Figure 5. Clustering result of bounding boxes
(best viewed in color).

where σs is constant during the iteration.
The feature points which are included in a bounding

box should be different if its state is moved. Therefore
they are collected by a spatial search. We use a space
patitioning data structure like a k-d tree [20] to achieve
an efficient point collection.

Clustering A set of bounding boxes should be
grouped by an appropriate clustering algorithm into
some mixture components in order to represent the
mixture filtering distribution. We adopt the mean shift
algorithm [21] as a clustering method and classify the
bounding boxes based only on their centers. Figure 5
shows a clustering result of the bounding boxes where
a group is composed of same colored boxes.

The samples of a mixture component are integrated
to estimate the mean of their states:

x̄k,t =
∑
j∈Lk

w
(j)
t x

(j)
t . (11)

We can use the bounding box constructed from the
mean state B̄ = (c̄x, c̄y, s̄xlx, s̄yly) in order to evaluate
the similarity measure in Eq. (1) because the samples
of a mixture component may cover a similar region and
the number of mixture components is usually less than
that of bounding boxes.

The feature points which are included in an inte-
grated bounding box can also be found by the data
structure as metioned above. We should recompute
both the mixture coefficients and the particle weights
according to Eq. (7).

3 Experiments

We have conducted an experiment where the visual
primitives are extracted as SIFT descriptors [7] al-
though some other descriptors can be used, and the
parameters are set to be σ0 = 10, κ = 20, σs = 0.02,
T = 100, M = 500, lx = ly = 151, ε = 0.30.

The result of common pattern detection is shown in
6 given the image pair in Fig. 1 and another result
is shown in Fig. 7. Not all the common objects are
detected but salient visual patterns are extracted. Here
we perform the binarization [22] of the confidence map
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(a)

(a′)

(b)

(b′)
Figure 6. Experimental results. (a, b) confidence
maps. (a′, b′) segmentation by masking the con-
fidence.

(a)

(a′)

(a′′)

(b)

(b′)

(b′′)
Figure 7. Experimental results. (a, b) original
image pair. (a′, b′) confidence maps. (a′′, b′′)
segmentation by masking the confidence.

and can achieve better detection by leveraging more
sophisticated algorithms [16].

4 Conclusions

We have presented an approach to common visual
pattern detection in image pairs. Our method is de-
rived from the mixture particle filter which can be
seen as a detector rather than a tracker. The experi-
ment showed that our proposed algorithm has achieved
promising results for common pattern detection.
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