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Abstract

Tracking objects in a scene under different degree
of occlusions is still a challenge in computer vision. In
this paper, we aim to tackle this problem with a jump
observation model that includes both visible objects and
occluded objects in a sequential particle filter tracking
technique. The technique is extended from the sequen-
tial estimation method. An hierarchical structure is
introduced to model visible objects and its objects that
are occluded. With this structure, we are able to han-
dle the weak measurement observation of the occluded
objects and try to track objects under occlusions.

1 Introduction

Occlusion is one of the important and necessary fac-
tors to consider in tracking multiple objects in video.
This is a challenging task due to the lack of informa-
tion when objects are occluded. A dynamic template
updating mechanism [1] is proposed to adapt with the
changes of a single object under occlusions, for exam-
ple, a person goes behind a tree. In multiple object
tracking, the occlusion between objects also needs to
be considered. Some methods are proposed to track
multiple objects under occlusions by assigning objects
into different layers [2, 3]. The idea of these methods
is that pixels, segments, or motions that have simi-
lar properties are grouped into a layer. In [2], Tao
proposed a dynamic background layer model and each
moving object are modeled as a foreground layer. In
[3], a sequential estimation method is proposed to ob-
tain state estimates at each layer. The occlusion also
can be handled by considering many levels of tracking
[4]. However, the loss information of objects during
occlusions may raise a challenge issue for these ap-
proaches.
Some other approaches introduce prior and likeli-

hood functions in multiple object tracking to handle
interactions between objects such as occlusions [5, 6, 7].
These techniques do not clearly model objects that are
occluded. Thus, they can fail under a large degree of
occlusion.
To overcome the occlusion problem, some methods

[8, 9] take advantage of using multiple cameras to com-
pensate for the lack of object information when using
a single camera . These methods can handle the oc-
clusion efficiently.
In this paper we propose a new approach for oc-

clusion handling based a jump observation model that
includes both visible objects and occluded objects in a
sequential particle filter. We notice that when person
B is occluded by person A, the state of person B can be
estimated based on visual observations from person A.
It is like a share or jump observation model from B to
A. Then, this observation model is embedded in a se-
quential particle filter. Hence, our method can be used
for tracking under half occlusions or total occlusions.

2 Sequential particle filter

Let Xk = {Xk,1, Xk,2, ..., Xk,N} be the state of mul-
tiple objects, where the state of each object, Xk,i =
{x, y, rx, ry}, is represented using an ellipse with center
{x, y}, radius {rx, ry}. Multiple object stateXk can be
estimated by posterior density p (Xk|Z1:k) where Z1:k

are image frames from time 1 to k. Let denote that the
high to low object layers are numerated from 1 to N .
Each layer contains one object, and the order of ob-
jects in Xk is the same with the order of layers. Then,
an heuristic approximation for the posterior density is
proposed in [3]

p (Xk|Z1:k) �
N∏
j=1

p
(
Xk,j |Z1:k−1, Z̄

j
k

)
(1)

where Z̄j
k is the image Zk after removing objects from

1 to j − 1. With this approximation, we propose here
a sequential particle filter to estimate multiple object
posterior density p (Xk|Z1:k) by applying the particle
filter [10] sequentially as follows.

With previous multiple object estimation X̂k−1, we
can determine layers for objects at time k by an as-
sumption that if an object has a larger y-position than
other objects, this object will belong to a higher layer
than others. This assumption is easy to understand
in our scenarios because the direction of the camera
is known in advance. Then, a particle filter is ap-
plied for the first layer to obtain the state estima-
tion for object 1, X̂k,1. After that, the image patch

that is occupied by object 1 at X̂k,1 is replaced by
the background patch. This process is repeated until
the state estimation of object N , X̂k,N , is obtained.
The details of the algorithm is summarized in Figure

1. The likelihood function p
(
Z̄j
k|X̃(i)

k,j

)
will be defined

in Section 3. qk

(
·|X(i)

k−1,j , Z̄
j
k

)
is a sampling function.

In this context, we choose qk

(
X

(i)
k,j |X(i)

k−1,j , Z̄
j
k

)
=

p
(
X

(i)
k,j |X(i)

k−1,j

)
where p

(
X

(i)
k,j |X(i)

k−1,j

)
is a state tran-

sition density from the dynamic model

Xk,j = Xk−1,j + vk,j (2)

where vk,j is a process noise, vk,j ∼ N (0, Rk).

3 Jump observation model

Let us consider the likelihood function for object
j. Assuming the camera is fixed, likelihood func-

tion p
(
Z̄j
k|Xk,j

)
is defined based on color measure-

ment model p
(
Z̄j,c
k |Xk,j

)
and background measure-
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At time k ≥ 1
Step 1. Initialization

From previous multiple object estimation X̂k−1,
sort objects to layers.
Step 2. Processing

Z̄1
k = current image frame

For each object j (w.r.t the layer order)

Obtain predicted samples from
{
X

(i)
k−1,j

}L

i=1

X̃
(i)
k,j ∼ qk

(
·|X(i)

k−1,j , Z̄
j
k

)
Update weights for predicted samples

Set w̃
(i)
k,j =

p
(
Z̄j
k|X̃(i)

k,j

)
p
(
X̃

(i)
k,j |X(i)

k−1,j

)
qk

(
X̃

(i)
k,j |X(i)

k−1,j , Z̄
j
k

)
Normalized weights:

∑L

i=1
w̃

(i)
k,j = 1

Resample to get
{
w

(i)
k,j , X

(i)
k,j

}N

i=1

Obtain state estimate X̂k,j from
{
w

(i)
k,j , X

(i)
k,j

}N

i=1

The image patch defined by X̂k,j is replaced

by the background image patch to form Z̄j+1
k

EndFor

Figure 1. Sequential particle filter for multiple
object tracking

ment model p
(
Z̄j,b
k |Xk,j

)
. Thus, the likelihood func-

tion is described as

p
(
Z̄j
k|Xk,j

)
= p

(
Z̄j,b
k |Xk,j

)
p
(
Z̄j,c
k |Xk,j

)
(3)

Color likelihood model. State Xk,j is divided
into m×n small regions. Each of region l is associated
with a small image patch in Z̄j

k. Then, each of these im-
age patches will be determined whether it is occluded
by other objects from 1 to j − 1. This can be done
based on state estimations X̂k,1:j−1 obtained from the
sequential particle filter in Section 2. Likelihood model

p
(
Z̄j,c
k |Xk,j

)
is defined by the multiplication between

likelihood models of small image patches

p
(
Z̄j,c
k |Xk,j

)
=

m×n∏
l=1

p
(
Z̄j,c,l
k |Xk,j

)
(4)

where Z̄j,c,l
k is the observation for small image patch l.

In this paper, we choose n = m = 2. Each of image

patch l may be occluded by other objects. Thus, Z̄j,c,l
k

may be borrowed from other objects. The likelihood
function for each image patch is modelled by a jump
model as follows

p
(
Z̄j,c,l
k |Xk,j

)
=

j∑
m=1

p
(
Z̄j,c,l,m
k |Xk,j

)
p (hm|hj) (5)

where Z̄j,c,l,m
k is the observation borrowed from object

m, p (hm|hj) is the transition probability from object
j to object m. Elements in the transition matrix is

satisfied
∑j

m=1 p (hm|hj) = 1. Here, we set

p (hj |hj) = α (6)

p (hm|hj) =
(1− α)

j − 1
(7)

With this likelihood function, when the image patch is
occluded, invisible objects also can use the observation
from visible objects. This makes the system can track
objects through occlusions.
Let pl(u) be the color histogram (grayscale color

space) of image patch l, and ql(u) be the color his-
togram of template of object m at occluding image

patch l. The likelihood function p
(
Z̄j,c,l,m
k |Xk,j

)
is

defined by

p
(
Z̄j,c,l,m
k |Xk,j

)
=

1√
2πσ2

c

exp

{
−D2

j,c,l,m

2σ2
c

}
(8)

where σc is a variance of noise, Dj,c,l,m =√
1− ∫ √

pl(u)ql(u)du is the Bhattacharyya distance

[11].
Background likelihood model. Similarly to

the color likelihood model, the background likelihood
model is

p
(
Z̄j,b
k |Xk,j

)
=

j∑
m=1

p
(
Z̄j,b,m
k |Xk,j

)
p (hm|hj) (9)

Let Z̄j,b,m
k be the background subtraction image after

borrowing observations from object m. Assuming that

pixels si in Z̄j,b,m
k are independent

p
(
Z̄j,b,m
k |Xk,j

)
=

∏
si∈rj,b,mk

pf (si|Xk,j)
∏

si /∈rj,b,mk

pb (si|Xk,j)

(10)

=
∏

si∈rj,b,mk

pf (si|Xk,j)

pb (si|Xk,j)

∏
si∈Z̄j,b,m

k

pb (si|Xk,j)

∝
∏

si∈rj,b,mk

pf (si|Xk,j)

pb (si|Xk,j)

where rj,b,mk is the region of image patch defined by
Xk,j . pf (si|Xk,j) is the likelihood that pixel si be-
longs to the foreground, and pb (si|Xk,j) is the likeli-
hood that pixel si belongs to background.

pf (si|Xk,j) =
1√
2πσ2

b

exp

{
− (si − 1)

2

2σ2
b

}
(11)

pb (si|Xk,j) =
1√
2πσ2

b

exp

{
− si

2

2σ2
b

}
(12)

From equations (3, 4, 5, 8, 9, 10), we can obtain the like-

lihood model p
(
Z̄j
k|Xk,j

)
.

4 Experimental results

We evaluate the performance of the proposed
method in sequences from EPFL [12], CAVIAR [13],
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Figure 2. Results of multiple object tracking on EPFL data

Figure 3. Results of multiple object tracking on CAVIAR data

PETS09 [14]. In these data, our assumption about
camera view is satisfied. That means if an object has
y-position larger than other ones, this object will be-
long to the higher layer. We use 100 samples to repre-
sent for the multiple object posterior density function.
Variance parameters σb = 16, σc = 0.1, α = 0.9 in the
observation model in Section 3 are set by experiments.

In EPFL data, there are about 343 frames. In this
scenario, four persons move in the tracking area. Both
total and half occlusion appear in this data. Figure
2 shows the comparison between our method and the
particle filter with no jump likelihood model. For the
particle filter with no jump likelihood model, if persons
are far from each other (for examples, frames from 1 to
93), this method can work well. However, when occlu-
sions appear, the tracking performance will be affected
(for examples, frame 135). Also in Figure 2, the per-
formance of our method is demonstrated in the first
row. In most of time, our method can give good state
estimates of objects. This is because of the occluded
persons can use the observations from visible persons
in our method. Hence, the tracking can maintain well
during occlusions.

In CAVIAR data [13], the sequence ThreePast-
Shop2cor.mpg is chosen for evaluating. In this se-

quence, because the results from background subtrac-
tion are not good enough, the detections for new ob-
jects are difficult to obtain automatically. Hence, in
this case, we assume we have detections for new ob-
jects. Then the tracking can be done by the proposed
method. In this sequence, the camera is set up at the
corridor and look forward. We assume 4 persons are
required to track as shown in Figure 3. At frame 456,
the black person and red person move to different di-
rections, and they are overlapped together. At frame
487, two black persons are occluded. However, because
of the mechanism of our method, observations can be
shared between objects. Hence, the proposed method
can handle these occlusions. Moreover, when they are
near each other, objects are tracked from high to low
layers. Hence, the clutter problem that is an impor-
tant issue for particle filter in visual tracking can be
overcome with our framework.

In PETS09 data, we chose S2.L1 sequence for eval-
uating. This sequence is challenging due to similar
appearances and occlusions between persons. The per-
formance of our method in this sequence is shown in
Figure 4. We assume that the initial positions of per-
sons are known in advance. Then, our algorithm can
give state estimates of these persons. Some challenges
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Figure 4. Results of multiple object tracking on PETS data

cases such as three occluding persons from frames 40
to 173, two occluding persons in frames 226, 440, etc.
Based on the sequential particle filter with the jump
likelihood model, occluded persons can employ obser-
vations from visible persons. Hence, tracks of persons
are maintained. Figure 4 shows that our method can
handle efficiently this scenario.

5 Conclusions

This paper described a method using the jump likeli-
hood model in the sequential particle filter for multiple
object tracking. Our sequential particle filter estimates
states of objects from high to low layers. The proposed
likelihood model can help occluded objects employ ob-
servations from visible objects. Hence, our method can
provide a mechanism to track objects under occlusions.
Moreover, our method is also easy to extend by fusing
multiple features. This is based on robust properties of
the particle filter in data fusion. Experimental results
show that the occlusion can be handled efficiently in
our framework.
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