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Abstract

We present in this paper a structure-from-motion
approach for single viewpoint cameras using point and
line features. From the image sequence captured by
any central projection cameras, the motion can be re-
covered by decoupling of orientation and displacement:
rotation is estimated from vanishing points of paral-
lel lines and translation is calculated from known ro-
tation and point/line correspondences. Next, the 3D
structure is reconstructed by triangulation of projec-
tive rays or planes. Lastly, the camera motion and 3D
scene are optionally refined by bundle adjustment. This
approach can be applied to recover the motion of au-
tonomous robots or the arrangement of a vision-based
surveillance system equipped with any single viewpoint
cameras such as perspective, fish-eye and catadioptric
cameras. Moreover, the translation can be estimation
from points and/or lines depending on the availability
of these features in the images. The proposed algorithm
has been validated on simulation data and real images.

1 Introduction

Vision-based system has recently become a widely
used assisting device in the navigation of autonomous
robots besides the conventional ones such as Global
Positioning System (GPS) and Inertial Navigation Sys-
tem (INS). Recently, researchers have utilized many
camera types in order to exploit their advantageous
characteristics such as the wide field of view of omni-
directional cameras and the uniform spatial resolution
of perspective cameras. To make use of such a het-
erogeneous sensor mixture, we propose in this paper
a structure-from-motion algorithm using image corre-
spondences across multiple hybrid views. A question
arisen here is that what kind of image features should
be used. Between point and line features, the corre-
spondence task is more trivial for lines than for points
over multiple views of heterogeneous cameras. Lines
is less likely to be produces by noise than points in
man-made environment. Lines are less numerous but
more informative. Lines are less affected by occlusions
as each line can be reconstructed from its different seg-
ments in multiple images. However, the disadvantage
of using lines is that the reconstruction is only feasible
from at least three views whereas it can be done using
point correspondences across two views. Moreover, in
some particular scenes, one feature is more dominant
than the other. Therefore, we propose a structure-
from-motion method using any available point or line
features. The following sections introduce some related
works on structure-from-motion problem.

1.1 Structure from motion using point features

Point-based structure-from-motion methods may be
started with factorization technique [12, 19] in which
the camera motion and scene structure are ”factorized”
from the image feature matrix.
Besides factorization, the minimal structure from

motion solutions such as 8-point [6] or 5-point [14] al-
gorithms have been proposed to recover the camera
pose from image correspondences.
Recently, L∞ optimization methods have been de-

veloped to solve the structure-from-motion problem.
This approach is based on second-order cone program-
ming (SOCP) to estimate the camera translations and
3D points assuming known rotations [9, 13,16].

1.2 Structure from motion using line features

There exist numerous works on structure from mo-
tion using straight lines [2, 4, 7, 17,18,22].
Line-based structure-from-motion algorithms can be

classified firstly to factorization technique. Without
any assumption about camera calibration and 3D in-
formation, the camera and line locations are recovered
up to projective [11,20] or affine [15] transformation.
Secondly, there exist sequential approaches which are

composed of three stages: (i) camera motion estima-
tion, (ii) feature triangulation to obtain 3D structure
and (iii) optimization by bundle adjustment [8, §18].
In the first stage, camera transformations can be re-
covered using matching tensor built up from line corre-
spondences in triplets of views [5,7,21]. Concerning the
second and last stages, the principle difference among
the previous works is in the parameterization of 3D
lines. A thorough description of line representations
and their characteristics can be found in [2].

We propose in this paper a sequential structure-
from-motion approach assuming calibrated cameras.
Firstly, the camera transformations are recovered by
decoupling of rotations and translations: rotations are
estimated from vanishing points of parallel lines, and
translations are linearly calculated from point/line cor-
respondences. Secondly, the 3D structure is recon-
structed by the triangulation of projection rays and
planes. Finally and also optionally, the camera motion
and scene structure are optimized by bundle adjust-
ment. Throughout three stages of the proposed al-
gorithm, we represent our calibrated single viewpoint
cameras by the generic spherical camera model to per-
mit an application to several kinds of cameras such
as perspective, central catadioptric and fish-eye cam-
eras [1, 23]. Moreover, we introduce a linear trans-
lation estimation using point and/or line correspon-
dences, which permits a flexible use depending on the
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visibility of these features across multiple views. The
next three sections describe our estimation algorithm
in three stages. We show then the experimental results
obtained with simulation and real images; and lastly
some conclusions.

2 Linear motion estimation

In this section, we present a linear motion estimation
approach by decoupling of rotation and translation: ro-
tations are estimated from vanishing points of parallel
lines and translations are recovered from known rota-
tions, point and line features.
Notation: Matrices are denoted with Sans Serif

fonts, vectors with bold fonts and scalars with italics.
Consider three central cameras Ci (i = 1...3) as il-

lustrated in figure 1. Let the coordinate system ori-
gin be at the first camera center and [Ri|ti] represent
the [Rotation|translation] between Ci and the origin,
hence [R1|t1] = [I|0].
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Figure 1. Camera transformations

2.1 Rotation estimation

Rotation between two cameras can be estimated
from correspondences of vanishing points, i.e. the in-
tersection of parallel lines [3]. After the detection of
vanishing points Vi in all images, each rotation Ri can
be recovered linearly as follows:

Vi = RiV1 (1)

2.2 Translation estimation

We demonstrate in this section that translations can
be recovered using point correspondences between two
views and line correspondences among three views.
Bilinear constraint of point correspondences : Point

correspondences in two views (a, b) related by the
transformation [R|t] satisfy the following constraint [3]:

(Rpa × pb)
T t = 0 (2)

Trilinear constraint of line correspondences: Each
line in image plan can be back-projected on the sphere
as a great circle associated with a normal. A normal
correspondence across three views (1, a, b) can be re-
lated through the transformations among these views
[10]:

[n1]×RT
a nan

T
b tb − [n1]×RT

b nbn
T
a ta = 0 (3)

Given three cameras Ci, the constraints (2) and
(3) can be encapsulated in the following linear sys-
tem which permits the translation estimation from any
available point or line correspondences:

AX = 0 (4)

where

A =

⎡
⎢⎢⎣

(Rap1 × pa)
T 0

0 (Rbp1 × pb)
T

−(RbR
T
a pa × pb)

TRbR
T
a (RbR

T
a pa × pb)

T

−[n1]×RT
b nbn

T
a [n1]×RT

a nan
T
b

⎤
⎥⎥⎦

and

X = (tTa t
T
b )

T

Note that the third row of matrix A is linearly de-
pendent of the first and second rows. However, in case
of noisy data, we can still use this relation for the es-
timation without redundancy.

2.3 Reconstruction

Each 3D point P is reconstructed by the triangula-
tion of the projection rays passing through P, Ci and
the image point projected on the sphere pi (5). The
linear solution of P is given in (6).

P = Ci + αi(pi −Ci) (5)

BP̂ = C (6)

where

B =

[
I C1 − p1 0 0
I 0 C2 − p2 0
I 0 0 C3 − p3

]
,

P̂ = (PT , α1, α2, α3)
T and C = (CT

1 ,C
T
2 ,C

T
3 )

T

Each 3D line is reconstructed by the intersection of
the projective planes passing through line correspon-
dences across three views:

GL̂ = 0 (7)

where

G =

⎡
⎣ nT

1 0
nT
2 R2 nT

2 t2
nT
3 R3 nT

3 t3

⎤
⎦ and L̂ = (LT , 1)T

From the singular value decomposition of G = UDVT ,
the two columns of V corresponding to two largest sin-
gular values can be used to define the line intersection
of the planes [8, §12.7].

2.4 Bundle adjustment

This optional optimization stage refines the cam-
era motion and 3D structure by minimizing the re-
projection error of points and lines on spherical images.
Each camera is parameterized by the 7-vector

ci=(r0, r1, r2, r3, tx, ty, tz)i where (r0, r1, r2, r3) is
the quaternion representation of the rotation and
(tx, ty, tz) the conventional translation. Each 3D
point is described by the 3-vector pj = (px, py, pz)j .
Each 3D line is represented by the 6-vector
lk=(e1x, e

1
y, e

1
z, e

2
x, e

2
y, e

2
z)k established by two points e1

and e2 on the line.
The parameter vector in the optimization is defined

by all parameters describing i cameras, j points and k
lines Q = (c1 . . . ci,p1 . . .pj , l1 . . . lk).
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Bundle adjustment minimizes the following re-
projection error with respected to all camera, 3D line
and point parameters:∑

i

∑
j

dp(p̂ij , P(ci,pj))+
∑
i

∑
k

dl(n̂ik, P(ci, lk)) (8)

where

dp = p̂ij × (Ripj + ti)

dl = n̂ik × [(Rie
1
k + ti)× (Rie

2
k + ti)]

where P is the spherical projection of point pj or line
lk in camera ci. p̂ij and n̂ik are the spherical back-
projection of the image point j and the image line k in
camera i respectively.
The minimization can be solved by Levenberg-

Marquardt non-linear algorithm. The initial param-
eter estimate Q0 is provided by the camera motion
recovery and reconstruction stages.
Each row of the Jacobian matrix is calculated for

each point and line in each camera:
Points:

∂dp
∂Q

= [
∂dp
∂c1

. . .
∂dp
∂ci

,
∂dp
∂p1

. . .
∂dp
∂pj

, 0 . . . 0] (9)

Lines:

∂dl
∂Q

= [
∂dl
∂c1

. . .
∂dl
∂ci

, 0 . . . 0,
∂dl
∂l1

. . .
∂dl
∂lk

] (10)

3 Experimental results

3.1 Simulation

We first create a set of 10 points and 10 lines ran-
domly distributed in a sphere with 5 meter radius.
Three cameras with an average baseline of 0.5 me-
ter observe these features at a distance of 10 me-
ters. The translations among 3 cameras are recovered
from points using 5-point algorithm [14] and from both
points and lines using our approach.
Points and line normals are on unitary spheres, thus

may be specified by elevation and azimuth angles.
Gaussian noise of zero mean and varying standard de-
viations is added to each angle of every point and nor-
mal. Figure 2 shows the average angular error of all
translations after 1000 runs. It can be seen that our lin-
ear estimation (in green) is more robust to noise than
5-point estimation (in red) and moreover the bundle
adjustment stage (in blue) optimizes the linear solu-
tion.

3.2 The door sequence

In this section, we evaluate different motion esti-
mation approaches based on: i. points (5-point al-
gorithm [14]), ii. lines (our approach) and iii. combi-
nation of points and lines (our approach).
Three image samples captured by two fish-eye (C1

and C2) and one perspective (C3) cameras are illus-
trated in figure 3. From 15 point and 13 line correspon-
dences across these images, the camera motion and 3D
structure are recovered and refined by bundle adjust-
ment which converges after 5 iterations. A snapshot of
the reconstruction is shown in figure 5.
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Figure 2. Estimation error of our approach com-
pared to 5-point algorithm

Figure 3. Fish-eye and perspective images with
point and line correspondences

To evaluate the up-to-scale structure reconstruction,
we verify the dimension of the reconstructed doors (ta-
ble 1). Four doors (with extracted borders in figure 3)
from left to right are denoted Door 1 to 4 respectively.
Using height/width ratio of each door obtained from
the reconstruction, we deduce its height given its real
width. The result is not satisfied for the first door as
it is near the image border where there is much dis-
tortion, especially in fish-eye images. The line-based
approaches provide much better results than point-
based-only method and there is no important differ-
ence between the estimation using only lines and the
estimation by combining points and lines. The reason
of this may be that line-based estimation suffers the
effect of noise less than point-based one, and conse-
quently adding point feature does not improve signifi-
cantly the result of line-based estimation.

The re-projection of 3D lines into one of the fish-eye
views is illustrated in figure 4. As can be seen from
this figure, the point-based approach is very sensitive
to noise whereas line-based and point-line-combining
approaches perform well in the presence of noise and
do not differ from each other.
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Door 1 Door 2 Door 3 Door 4
Points 242 199 215 212
Lines 228 206 206 200
Points+Lines 229 206 206 204
Real height 203 203 203 203

Table 1. Structure reconstruction result
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Figure 4. Reprojection of reconstructed 3D lines

Figure 5. Reconstruction

4 Conclusions

We have proposed in this paper a structure-from-
motion algorithm for single viewpoint cameras using
point and line correspondences. The presented tech-
nique has been validated on simulation data and with
real images. To recover the transformations among
multiple views, we estimate the rotations using vanish-
ing points and the translations from known rotations
and point/line correspondences by a linear algorithm.
The proposed algorithm can be applied to any type
of single viewpoint cameras and moreover, the transla-
tions can be recovered from any available point and/or
line features.
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