
Trajectory Generation for 1000 fps Direct Visual Servoing∗

Roel Pieters, Pieter Jonker and Henk Nijmeijer
Dynamics and Control Group, Department of Mechanical Engineering

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven
The Netherlands

email:{r.s.pieters, p.p.jonker, h.nijmeijer}@tue.nl

Abstract

This paper presents a trajectory generation method
by using a repetitive product pattern as visual encoder
for control feedback. A direct, high-speed coupling be-
tween camera measurements and local motor control
motivates the omission of local motor encoders. By ex-
ploiting the repetitive structure of the product and sam-
pling at a high update rate (i.e., 1000 fps), a velocity-
constraint polynomial trajectory is designed for image-
based velocity feedback. We present algorithms for im-
age processing and trajectory generation with a frame
rate of 1000 fps and an image size of 619× 75 pixels.

1 Introduction

In present day, most visual servoing approaches use
visual input (at e.g. video rate) only as reference tra-
jectory for motion control. Stability of the complete
system is only guaranteed when using an additional
local motor controller or by updating the visual feed-
back loop fast enough [8]. When regarding this ad-
ditional local motor controller, high accuracy position
(or velocity) measurements are obtained via motor en-
coders situated within a motor housing. We disregard
these encoders and use a camera positioned at the end-
effector to obtain high accuracy and high speed (i.e.,
1000 fps) position measurements.

In order for this visual servoing method to be suc-
cessful, a few requirements have to be taken into ac-
count. Firstly, a balance has to be found between a
high sampling rate and the size of the image to ex-
tract useful information. Secondly, since the image ef-
fectively becomes the encoder, a repetitive pattern is
necessary that acts as reference for motion control.

Positioning can then be effected by controlling a
product (i.e., a repetitive pattern feature) towards the
centre of the camera’s field of view. In this case lens
distortions and inaccuracies in internal and external
camera parameters have little effect on performance,
due to the minimization of the error function (i.e., un-
calibrated visual servoing). Since this causes a zero
velocity when the feature is in the centre of the field of
view, the result will be a stop-and-go positioning.

However, when such trajectory is unwanted, a more
complex trajectory generation method has to be em-
ployed. For example, when regarding industrial inkjet
printing, a constant velocity over each product feature
is required for accurate printing. This then involves
the design of a polynomial trajectory with setpoints
obtained from the repetitive product pattern. Since in
this method the complete image is used for control, the
calibration of the optical system is necessary.

∗This research is supported by Agentschap NL - IOP Preci-
sion Technology - Fast Focus On Structures (FFOS).

2 Similar work

Similar work is done by Namiki et al. [7] which
describes an eye-to-hand visual servoing application
where the joint loop is also directly controlled by the
vision sensor. In this, the position between a hand
and an object as well as a collision avoidance between
grasped object and other objects is controlled directly.
This research uses the well-known 1 ms sensory-motor
fusion system, which has been developed several years
ago by the Ishikawa-Komuro Laboratory [6] and is still
a state-of-the-art. In several other projects, this vision
system, consisting of two 2 DOF pan-tilt units with
a pixel parallel processing array, forwards visual in-
formation to a larger robotic manipulator for different
visual control tasks (e.g., batting [13]). Other high
speed vision systems are e.g., [3] and [4].

These approaches are all focused on visual servo-
ing for industrial robotic manipulators. Research on
microscopic imaging and positioning systems is for ex-
ample by Ogawa et al. which proposes a visual con-
trol system for tracking and directing motile cells using
a high-speed tracking system [8]. Other, more tradi-
tional examples can be found in [1] and [15], a short
survey in [5].

Other research involving repetitive patterns is lim-
ited to camera calibration techniques or structured,
coded light applications. Camera calibration uses
a predefined (usually printed) pattern to determine
the camera’s intrinsic and extrinsic parameters [14].
Structured coded light applications involve a camera-
projector system that projects an array of structured
light onto objects to identify their shape or depth [10].

Our method differs from existing visual servoing
techniques by exploiting the repetitiveness of the prod-
uct pattern as visual encoder for 2D planar positioning.
In this, only off-the-shelf components are used and a
single, direct feedback loop connects camera measure-
ments to a local motor controller. Our work extends
from [2] by using complex feature structures and defin-
ing a polynomial trajectory for positioning.

3 Direct High-Speed Visual Servoing

In order to compute a trajectory for visual motion
control, the initial step is extracting visual encoder
points from our repetitive product pattern (for clar-
ity, a single structure in the repetitive product pattern
is from now on called a ’feature’). This involves an im-
age processing algorithm for subpixel feature detection
and the calibration of the visual system.

3.1 Repetitive Product Pattern

Examples of repetitive patterns are for instance or-
ganic LED displays (OLEDs, Fig. 1.a) or semiconduc-

MVA2011 IAPR Conference on Machine Vision Applications, June 13-15, 2011, Nara, JAPAN4-1

39

(a) OLED substrate (b) Wafer substrate

Figure 1. Repetitive product patterns. High res-
olution image of OLED substrate (a). High Res-
olution image of transistors on a wafer (b).

tors on a wafer substrate (Fig. 1.b). In both cases a
positioning task has to align the product head with re-
spect to a repetitive pattern feature and perform a task
with micrometer accuracy (typical size of one OLED:
80 × 220 μm). In the case of OLED manufacturing,
this additional task consists of inkjet printing, in the
case of semiconductor manufacturing, a pick-and-place
task has to be carried out. Despite the difference in
manufacturing, a similar approach towards using the
product as encoder can be taken. One approach uses
a feature as an image-based visual servoing goal; min-
imizing the error in image space. A second approach
uses multiple features in the field of view to form a tra-
jectory which has to be followed. For both approaches
it holds that while moving, new features are added as
setpoint or used for trajectory generation.

3.2 Image processing

In order to use the product as encoder, fast image
processing extracts individual encoder points from an
image. From a greyscale image, the first step is seg-
mentation into a binary format with Otsu’s method [9].
Mathematical morphology (contour following) then it-
eratively locates each feature and defines its position
by a bounding box (i.e., x, y and width and height as
variables). The final step is to compute the sub-pixel
accurate centre location inside each feature as follows:

The two vertical edges of each structure are known
from contour following and used to determine a pixel
accurate x-position for each of the four points:

hx[1] = box.x+ 0.2 ∗ box.width

hx[2] = box.x+ 0.8 ∗ box.width (1)

This is then the start point to localize the maxi-
mum edge gradient position in sub-pixel accuracy in
y-direction. With interpolation a local maximum is
obtained using five neighbouring points and calculat-
ing their gradient norm. Simply said, this is fitting
three points (i.e., representing the edge gradient) to a
quadratic equation and finding its maximum.

With L = {l(j)|j ∈ ℵ} an infinite line of pixels with a
peak at coordinate 0 corresponding to the middle pixel
l(0) and ∇ a general derivation operator (symmetric)
the gradient norm becomes:

a = |∇l(−1)|

b = |∇l(0)|

c = |∇l(1)| (2)

The maximum of the parabola (i.e., the highest slope
in intensity) passing through (−1, a), (0, b) and (1, c)
is now found by:

ym =
a− c

2(a− 2b+ c)
(3)

This maximum ym is calculated for hx[x] and its di-
rect neighbors, i.e., hx[x] − 1 and hx[x] + 1, and the
average of these three values is then passed as local
y-maximum. From the four found sub-pixel accurate
points, a line is fit from the two pairs of opposite points
on both vertical and horizontal edges. The crossing of
these lines determine the final centre coordinates of the
feature [11].

The presented centre detection algorithm is designed
for rectangular features. When a feature is square
shaped (as for transistors on a wafer, to be seen in
Fig. 1.b), a similar method can be used to determine
each centre location.

3.3 Parametric microscopic camera calibration

When using the complete image as reference and
measurement tool, camera calibration is a necessity.
Since microscopic imaging systems have a small depth
of focus, traditional camera calibration techniques are
no longer valid. One technique for calibrating micro-
scopic optical systems with small depth of focus, is
presented in [12] and [16]. In this, the camera model is
modified for the parallel case and calibration is based
on Tsai’s two-step method [14].

4 Trajectory generation

When feature points have effectively been extracted
from an image, these can then be interpreted to form
a velocity-based trajectory. Two methods can be em-
ployed for positioning: an image-based visual servoing
method and a constant-velocity method. The former
means that positioning actuates to individual features
(stop-and-go) and can be executed uncalibrated, the
latter positions with a fixed, predetermined velocity
over each feature-point.

For image-based visual servoing, an error minimiza-
tion positions the feature in the centre of the image
and subsequent feature points are iteratively set as
target. The constant velocity method uses multiple
feature points from one row (see Fig. 2) to compute a
trajectory and is designed as follows:

Determining a trajectory through n + 1 points can
be solved by means of a polynomial of degree n:

q(t) = a0 + a1(t) + . . .+ an(t
n) (4)

in which t represents time.
The polynomial coefficients can be computed by

solving a linear system of equations (n + 1): Given
the feature points (tk, qk) with tk the k-th time in-
stant, qk the k-th via-point (k = 0, . . . , n) and consid-
ering additional constraints on the polynomial coeffi-
cients regarding initial and final velocities and acceler-
ations, we can build the vectors q, a, and the so-called
Vandermonde matrix T of order n + m (i.e., n + 1
points, m additional constraints). Since tk+1 > tk,

40

with k = 0, . . . , n − 1, the matrix T is square and in-
vertible, the coefficients ak can be computed as:

a = T
−1

q. (5)

Using a polynomial interpolation method to deter-
mine a trajectory has the advantage that all points n
are crossed and that the trajectory is smooth. A draw-
back is the computational effort needed and the fact
that for large values of n numerical errors may occur.
Since the goal is to position along individual features
on a single row, the control (and thus the trajectory
generation) for x- and y-direction is partitioned. In
one direction, a trajectory is created for multiple fea-
ture points (e.g., n > 5, pitch > 100 μm). For the
other direction, a similar number of points computes a
trajectory that deviates only a few percent (i.e., pitch
< 5 μm).

5 Experimental results

In this section experimental results are given to val-
idate the use of a repetitive product pattern and tra-
jectory generation for control purposes.

5.1 Experimental setup

The camera and lens used for experiments are stan-
dard of-the-shelf industrial components: a Prosilica
GE680 camera with a frame rate of 200 fps full frame
(640×480 pixels) combined with a standard 1.5x mag-
nifying lens results in a pixel size of 3.08 μm. The
camera is connected via a Gigabit Ethernet interface
(GigE Vision) to a standard notebook with 2 GB of
RAM and 2.4 GHz Intel Core 2 Duo CPU.

Coaxial lighting is applied which has the advantage
that the light that enters the camera sensor is reflected
mainly from axial illumination. This is due to the use
of a beamsplitter which directs light from a power LED
source downwards onto the OLED substrate which
subsequently is reflected up into the camera.

The platform to be controlled is a planar xy-table (2
DOF) actuated by 2 linear motors. The camera and
the lighting itself are fixed. A controlled height and
orientation motion is not (yet) present.

The maximum image size for data transfer at 1 kHz
using GigE is 75 lines, disregard of image height. When
using the full effective range (due to lighting) of the
sensor, the image resolution is 619×75 pixels in which
2× 8 full features (OLEDs, see Fig. 2) are located.

5.2 Feature detection

Figure 3 shows the output of the image processing
algorithm, figure 2 shows the actual image from which
a trajectory is generated and table 1 shows the accu-
racy of the feature detection method.

Figure 2. Cropped OLED image. The image size
(619× 75) allows for a frame rate of 1 kHz using
Gigabit Ethernet (GigE) communication.

(a) Thresholded image (b) Detected pattern

Figure 3. Output of centre detection algorithm.
Fig. ’a’ shows the output after thresholding with
Otsu’s method. Fig. ’b’ shows the found OLEDs
outlined with a rectangle. On horizontal lines the
points are shown where the optimal vertical edges
are detected.

Table 1. Detection algorithm results

Centre detection
Accuracy 0.2 [px]

0.62 [μm]
Reproducibility (3σ) 0.36± 0.06 [px]

1.11± 0.18 [μm]
Timing (per feature) 0.045 [ms]

On average, nine features take 0.40 ms of process-
ing time. Equivalently, 16 features need 0.71 ms of
processing time, which is within timing limits. The
network load for transferring these images at 1 kHz is
roughly 50 MB/s.

The algorithm to detect feature centres and generate
the trajectory in real-time is controlled by the timer of
the camera, which is more stable (i.e., less jitter) than
a standard linux (or Xenomai) timer.

5.3 Visual trajectory generation

Using a polynomial to form a trajectory has the ad-
vantage that a velocity reference trajectory can be con-
structed by simple differentiation. The design of such
trajectory involves choices in number of points and the
constraints on velocity and acceleration. To clarify
this, a comparison is made between several simulated
trajectories.

In figure 4 it is shown that in order to anticipate
to future feature positions it is more beneficial to use
more points to construct a trajectory. The figure shows
a trajectory generation for one 7th order polynomial
with 4 points and three 3rd order polynomials with 2
points. The polynomials visit the same feature point
locations (at t = 0, 1, . . . , 3 seconds, relative stan-
dard deviation ∼11%) and have equal constraints on
start- and end-point (i.e., fixed velocity and no accel-
eration constraint). The difference is due to the in-
between feature velocity and acceleration constraints
and the fact that the higher order polynomial incor-
porates more points to generate a trajectory. This re-
sults in a more smooth velocity profile (and thus lower
acceleration) for higher order, multipoint polynomial
trajectories. The feature velocity on feature points for
both trajectories, however, is the same.

Figure 5 shows that constraints on velocity and ac-
celeration on feature points have to be chosen carefully
when designing a polynomial trajectory. When a con-
straint on acceleration is incorporated, this generally
results in a very oscillating trajectory (for position, ve-
locity and acceleration). A constraint on only velocity

41

0 500 1000 1500 2000 2500 3000

0.08

0.1

0.12

0.14
Polynomial velocity trajectory

iteration [−]

ve
lo

ci
ty

 [
m

m
/s

]

8th order polynomial (4 points)

6th order polynomial (3 × 2 points)

Figure 4. Trajectory point comparison. The solid
line depicts three velocity trajectories sequen-
tially, each computed from 2 points. The dashed
line depicts a velocity trajectory computed from
the same 4 points. Due to the extra constraints
on velocity and acceleration and the amount of
trajectory points, the subsequent 2-point trajec-
tories are less smooth.

0 500 1000 1500 2000 2500 3000
0.06

0.08

0.1

0.12

0.14

0.16
Trajectory constraint comparison

iteration [−]

ve
lo

ci
ty

 [
m

m
/s

]

velocity and acceleration constraints

only velocity constraints

no constraints

Figure 5. Polynomial constraint comparison. The
dashed (red) line shows that with acceleration
and velocity constraints on feature points, an
overall oscillating velocity signal is computed.
The solid (blue) line shows that only constraints
on velocity give the most moderate velocity tra-
jectory.

gives the most smooth or moderate trajectory and is
therefore preferable. Also here it holds that the feature
velocity on feature points for all trajectories is equal.

For the high-speed visual servoing task, the poly-
nomial trajectory is computed by using eight points
(n + 1 = 8) with an additional velocity constraint on
each point (m = 8), generating a 15-th degree polyno-
mial. For validation on an experimental setup, (refer-
ence) velocity measurements will be taken from visual
data.

6 Conclusions

We have presented a framework for using a repet-
itive product pattern as intelligent reference tool. In
this, the low-level motor encoders are disregarded and
direct, fast (i.e., 1 kHz) feedback is obtained between
image (619× 75 pixels) and motor. A method for de-
tecting simple, repetitive rectangular structures is pre-
sented, which reaches sub-micron accuracy. Position-
ing can then be executed in an image-based way (stop-
and-go) or by generating a polynomial trajectory. A
polynomial trajectory is computed by using a sequence

of feature points and adding additional constraints on
velocity and acceleration on feature point centres. We
show that using more feature points results in a more
smooth trajectory and that constraints on velocity and
acceleration have to be chosen carefully when designing
a polynomial trajectory.

Future work focusses on miniaturization of the visual
control system by implementing image processing, tra-
jectory generation and control on FPGA, which will re-
duce delay (direct connection between sensor and pro-
cessing unit) and computation time.

References

[1] H. Bilen et al., ”A comparative study of conventional
visual servoing schemes in microsystem applications”,
in IEEE IROS, pp. 1308-1313, 2007.

[2] J.J.T.H. de Best et al., ”Direct Dynamic Visual Servo-
ing at 1 kHz by Using the the Product as One Dimen-
sional Encoder,” 7th IEEE International Conference
on control and Automation, pp 361-366, 2009.

[3] R. Ginhoux et al., ”Beating heart tracking in robotic
surgery using 500 Hz visual servoing, model predictive
control and an adaptive observer”, in IEEE Int. Conf.
on Robotics and Automation, pp. 274-279, 2004.

[4] C. F. Graetzel et al., ”A 6000 Hz computer vision sys-
tem for real-time wing beat analysis of Drosophila”, in
IEEE / RASEMBS Int. Conf. on Biomedical Robotics
and Biomechatronics (BioRob), pp. 1-6, 2006.

[5] P. Kallio et al., ”Control Issues in Micromanipula-
tion”, in Int. Symp. on Micromechatronics and Hu-
man Science, pp. 135-141, 1998.

[6] Y. Nakabo et al., ”1 ms Column Parallel Vision System
and It’s Application of High Speed Target Tracking”,
in IEEE ICRA, vol. 1, pp 650-655, 2000.

[7] A. Namaki et al., ”A Hierarchical Control Architecture
for High-Speed Visual Servoing”, in Int. Journal of
Robotics Research, vol. 20(10-11), pp. 873-888, 2003.

[8] N. Ogawa et al., ”Microrobotic Visual Control of Motile
Cells Using High-Speed Tracking System”, in Robotics
and Automation, Trans., 21(4): pp. 704-712, 2005.

[9] N. Otsu, ”A Threshold Selection Method from Gray-
level Histograms,” in IEEE Transactions on Systems,
Man and Cybernetics, vol. 9 (1), pp. 62-66, 1979.

[10] J. Pagès et al., ”A camera-projector system for robot
positioning by visual servoing”, in conf. on Computer
Vision and Pattern Recognition Workshop, 2006.

[11] R.S. Pieters et al., ”High Performance Visual servo-
ing for controlled micrometer positioning”, in IEEE
WCICA, pp. 379-384, 2010.

[12] R.S. Pieters et al., ”Product Pattern based Camera
Calibration for microrobotics”, in IEEE IVCNZ, 2010
(accepted, in process).

[13] T. Senoo et al., ”High-Speed Batting Using a Multi-
Jointed Manipulator”, in Robotics and Automation,
Proc. IEEE Int. Conf., pp. 1191-1196, 2004.

[14] R.Y. Tsai, ”A Versatile Camera Calibration Tech-
nique for High-Accuracy 3D Machine Vision Metrol-
ogy Using Off-the-Shelf TV Cameras and Lenses”, in
IEEE J. of Rob. and Autom., 3, pp. 323-344, 1987.

[15] B. Vikramaditya, B. J. Nelson, ”Visually Guided Mi-
croassembly Using Optical Microscopes and Active Vi-
sion Techniques”, in IEEE ICRA, pp. 3172-3177, 1997.

[16] Y. Zhou, B.J. Nelson, ”Calibration of a Parametric
Model of a Microscope”, in Optical Engineering., 38,
pp. 1989-1995, 1999.

42

