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Abstract

This paper presents a novel inpainting method based
on structure estimation. The method first estimates an
initial image that captures rough structure and colors in
the missing region. This image is generated by probabil-
istically estimating the gradient within the missing region
based on edge segments intersecting its boundary, and
then by flooding the colors on the boundary into the
missing region. The color flooding is formulated as an
energy minimization problem, and is efficiently optimized
by the conjugate gradient method. Finally, by locally
replacing the missing region with local patches similar to
both the adjacent patches and the initial image, the in-
painted image is synthesized. The initial image not only
serves as a guide to ensure that the underlying structure is
preserved, but also contributes to prune the candidate
patches in the patch selection process, which leads to
substantial speedup. Experiments show the proposed
method outperforms previous methods in terms of both
image quality and computational speed, namely more
than 5 times faster than the state-of-the-art method.

1. Introduction

Inpainting is a technique for restoring damaged paint-
ings and photographs by filling in missing regions with
textures surrounding them [1]. This technique has been
used in a variety of applications, e.g., interactive image
editing for photo retouching, removing pedestrians from
street images for privacy protection [2], and so on.

Various inpainting methods have been proposed to date.
One of the most common inpainting techniques is an
exemplar-based method, which restores the missing re-
gion by pasting square patches sampled from the exterior
of the missing region. Exemplar-based methods can be
further classified into two categories: greedy and globally
optimal methods. Greedy methods iteratively paste
patches into the missing region until no missing area is
left. This method was first proposed by Harrison [3], and
since then, various modifications have been proposed.
Criminisi et al. introduced a “priority” measure which
specifies which part of the missing region should be
processed prior to the others [4]. Other methods improve
the accuracy of patch selection by pruning the patch can-
didates based on image segmentation [5,6]. Although
these methods are faster than globally optimal methods,
to be described later, they are by nature prone to local
minima due to its greedy procedure, often resulting in
discontinuity in the inpainted region. An example of this
type of error is shown in Fig.1. The region to be in-
painted is depicted with red mesh in Fig.1(a), and a close
shot of the inpainted result by [4] is shown in Fig.1(b).
Discontinuity is apparent on the wall and the window.
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Figure 1. Example of inpainted result by previous and
proposed methods

On the other hand, globally optimal methods treat in-
painting as combinatorial optimization on patch selection
[7-11]. These methods estimate the optimal combination
of patches to fill in the missing region by minimizing the
overall discontinuity within the region for a given set of
patches. Patch selection is optimized by Belief Propaga-
tion [7] or EM algorithm [8]. These methods, in contrast
to greedy methods, are capable of synthesizing continu-
ous inpainted region. However, optimization process
requires far more computation than greedy methods. An-
other issue is that globally optimal methods do not ensure
that the underlying structure in the missing region is
preserved. An example for this, obtained by [8], is shown
in Fig.1(c). Although a continuous inpainting result is
obtained, the wall fades away before reaching the floor,
blocked by the windows coming in from its both sides.

Recent advances in inpainting have been focused on
tackling these two issues. PatchMatch [10], which is im-
plemented in Photoshop CSS5, employs an approximate
nearest neighbor algorithm to speed up the patch selec-
tion. Although this method runs faster than the previous
globally optimal methods, it shares the same problem
with them in that the underlying structure is not pre-
served. Shift-Map [11] is another fast inpainting method,
which carries out inpainting by shifting exterior regions
into the missing region. Here, the offset with which each
region is shifted is constrained to be as uniform as possi-
ble, thus each shifted region is expected to preserve the
underlying structure. The method, however, often gener-
ates discontinuity on boundaries where different regions
meet. To summarize, developing an inpainting method
that is both structure-preserving and computationally
efficient still remains an open problem.

We propose an inpainting method that is capable of
preserving the structure underlying the missing region,
and is also computationally efficient. In the proposed
method, first, an initial inpainted image which captures
rough structure and colors in the missing region is esti-
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Figure 2. Overview of proposed method
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mated, assuming the underlying structure consists of lines
and homogeneous regions. The initial image for Fig.1(a)
is shown in Fig.1(d). Although this image lacks fine tex-
tures in the missing region, the base colors in the region
are correctly recovered. As can be seen, this image cap-
tures the structure, e.g. straight line between post and
floor. Then, using this image as a guide, patches are
sampled from the exterior of the missing region and
pasted into the region iteratively. The final result is
shown in Fig.1(e). As can be seen, structure-preserving
inpainted image is obtained by the proposed method.
This patch selection guided by the initial image not only
ensures to preserve the underlying structure; it also en-
ables the patch selection to be carried out in a greedy
manner. This gives us substantial speedup against previ-
ous methods, which require optimization over selected
patches.

The proposed method was evaluated and compared
with the state of the arts, including Photoshop CS5 and
Shift-Map [11], and has been proven to outperform them
in terms of both image quality and computational speed,
namely more than 5 times faster than Shift-Map.

2. Proposed Method

The overview of the proposed method is shown in Fig.2.
The proposed method consists of two steps: initial image
construction and texture synthesis. In the first step, an
initial image, which captures rough structure and colors in
the missing region, is estimated. This image is generated
by three processes: 1) extracting edge segments inter-
secting the boundary of the missing region, 2)
probabilistically interpolating the gradient inside the re-
gion, and 3) flooding colors on the boundary of the region
to the topographic relief formed by the gradient magni-
tude. In the second step, patches are sampled from the
exterior of the region and pasted into the region iteratively
in a greedy manner. Each step is detailed below.

Note that the proposed method differs from [12] in that
the color flooding process is formulated as a continuous
optimization problem, instead of discrete optimization.
This reformulation leads to speeding up the color flood-
ing process by a factor of 10.

2.1.

2.1.1 Edge segment extraction. An example of an image
with a missing region is shown in Fig.3(a). This step starts
from extracting edge segments intersecting the boundary
dQ between the missing regionQ and the source re-
gion® . First, end points of the edge segments are
detected by searching local maxima of gradient along the
boundary 4Q (Fig.3(b)). Then, Hough transform is ap-
plied to the source region ® . Here, votes corresponding to
lines that do not pass through the end points are discarded.
This allows us to detect only edge segments that

Initial image construction
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(a) missing region (b) end points (c) edge segments

Figure 3. End points and edge segments extraction
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Figure 4. Two types of edges considered

intersect the end points (Fig.3(c)). Finally, each edge
segment detected is associated with its orientation 0,
along with the corresponding end point’s position X, .

2.1.2 Probabilistic gradient interpolation. Next, the
gradient inside the missing region is interpolated ac-
cording to the detected edge segments. Here, the basic
idea is to extend each edge segment into the missing re-
gion, and to assign the gradient of the edge segment to
every pixel on the extended edge. Previous methods ex-
tend edge segments by hand [6, 9], or deterministically
based on some heuristics [5]. In general, however, it is
unknown to what extent each edge should be extended.
For example, in Fig.4(a), it is obvious that edge segments
on one side of the boundary should be fully extended to
the other side, whereas in Fig.4(b), edge segments should
be terminated where they intersect with other edges.
These examples suggest that 1) if an end point has a cor-
responding point on the other side of the boundary, the
edge segment is likely to be fully extended, and 2) the
more intersections an edge encounters, the less likely it is
to be further extended.

We employ this probabilistic approach to interpolate
the gradient in the missing region. Here, we refer to the
former type of edges as full edges, and the latter as half
edges. First, for each edge segment detected in the pre-
vious process, we consider two hypotheses: one for being
a full edge and the other for being a half edge, and for
every pixel in the missing region, likelihood for belonging
to each hypothetical edge is computed. Finally, each pixel
is determined to belong to an edge that gives maximum
likelihood.

The former likelihood, i.e. the likelihood that a pixel at
X belongs to a full edge connecting end points x, and
X,, is defined such that it gets higher if a pixel X is
close to a hypothetical full edge whose end points x,
and x ; have similar color and edge orientation, that is,
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Here, p(x,,x,) is the dissimilarity between x, and X,in
terms of color and orientation, and d,(x) 1s the dis-
tance from X to the edge connecting X, and
X,.L,,0, and o, are parameters determined empirically.
The latter likelihood, i.e. the likelihood that X be-
longs to a half edge starting from x, , is defined such
that it gets higher if a pixel X is close to a hypothetical
half edge:
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where w is a constant less than 1, #n(k,x) is the number
of intersections with other edges encountered between
X, and X, and d, (x) is the distance from X to the
half edge starting from an end point x, . Note that each
time the edge intersects another, this likelihood dimin-
ishes by a factor of w. This models the nature of a half
edge that it is less likely to be extended past the intersec-
tions to other edges. After computing likelihoods for
each hypothetical edge, the gradient v7(x) at pixel X
is given as that of the edge with the maximum likelihood,
weighted by the likelihood:

VIN( )7 V[xfm/ L/u” (X’k,{i‘”,l,{””) i L/iw (x,k"/ullyl;‘f};/[)ZLh”]/ (x, k:""f)
v VI:W/ Lhulf (Xs k:a[/) otherwise

where VI/* is the average of intensity gradient vectors
at X, andX,,and VI’ isthe gradientat X, .

2.1.3 Color flooding. An initial image is generated by
flooding colors on the boundary 4Q to the topographic
relief formed by the gradient magnitude. We formulate
this as a continuous optimization problem, and obtain the
optimal solution using the conjugate gradient method.

We consider a regular grid that covers the entire miss-
ing region and its neighbor in the original image, Here,
each node corresponds to a pixel in the image. The energy
function to be minimized is defined as follows:

F(X) :Fda!a (X) + F;maulh (X) ’
where X = (X,,---, X ,---,X,)is a set of colors for each
pixel. The data term in the above energy is defined as

FoaX)=3|X, -1(x)[
ped

where T'(x )is the color at x in the original image. This
term penafizes the estimated’ colors deviating from its
original colors. The smoothness term is given by

F (X): Zqu'HXp_Xq2

P.9eR
where R is a set of adjacent nodes. 7 is a weight for the
smoothness term, which is designedp Such that the closer
the direction from X to X,  is to the gradients at
X andX , the lighter it gets, 1.¢.,
P q = -
V= exp[f a‘npq «(VI (x,)+VI (xq)]]

where m is the unit vector whose direction coincides
with that from X p0X, - denotes the inner product of
vectors, and ¢ is a parameter determined empirically.
This weight adds an edge-preserving characteristic to the
smoothness term, where abrupt color transition is toler-
ated along the gradient, i.e. across the edge, while
imposing color uniformity to the other directions.
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2.2.

In the second step, the final inpainting image is synthe-
sized by sampling patches from the source region ® and
by pasting them into the missing region Q iteratively.
Here, a patch\}/(xj) , 1.e. a patch centered at X . in the
source region @, is selected as a patch to be pasted to X,
according to the following criteria: 1) a patch \}'(xj)is
continuous to the already pasted patches in the neighbors
of X;, and 2) is similar to corresponding region in the
initial image. Formally,

¥(x,) =argmine,,, (¥(x). ¥(x ) )+ c,, (F(x,). ¥(x,) )

Patch selection
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Figure 5. Experimental result on house image
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Figure 6. Comparison of inpainted results
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(b) inpainted result (c) initial image

(a) original image
Figure 7. Experimental results on natural images

where \i/(xi) and P(x,) are the patches at X j in the
inpainted image under construction and in the initial im-
age, and ¢, (¥(x,),¥(x,) and ¢, (¥(x,).¥(x,)) are the
sum of squared differences (SSD) of two patches
¥(x,),¥(x,) - Note that in e, (P(x,), ¥(x,))s difference is
computed only at pixels afjready filled by previously
pasted patches. Patch selection guided by the initial image
not only ensures to preserve the underlying structure, it
also allows the patch selection to be carried out in a
greedy manner. This gives us substantial speedup against
previous methods, which require optimization over se-
lected patches.

3. Experiments
3.1.

To demonstrate the performance of our method, we
performed experiments on real street images with pedes-
trians. Parameters used in the following experiments
are [,=9,0,=6x10",0,=05,w=05 and a=2,
respectively. An experimental result is shown in Fig.5.
Here, the original image with a missing region and the
inpainted result by the proposed method are shown in
Fig.5 (a) and (b), respectively. Close shots of the results
obtained by Photoshop CS5, Wexler’s method [8],
Shift-Map [11] and the proposed method are compared in
Fig.6 (a), (b), (c) and (d), respectively. The initial image
of the proposed method is also shown in Fig.6 (e). As
can be seen, none of the previous method succeeded in
reconstructing the underlying structure: the contour of
the door is heavily distorted (Fig.6 (a)), or the contour
fades away in the middle (Fig.6 (b) and (c)). On the other
hand, as shown in Fig.6 (d), the proposed method suc-
cessfully recovers the frame of the door. This is because

Inpainted results
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Figure 8. Experimental results on barrel image
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Figure 9. Evaluation of computational time

the structure of the door is roughly reconstructed in the
initial image (Fig. 6 (e)), and this image is utilized as a
guide in generating the final result (Fig.6 (d)).

Although the proposed method assumes the missing
region to be composed of linear structures, it also works
with images with structures that are not completely linear,
but can be approximated to be linear. An experimental
result for this type of image is shown in Fig.7. The miss-
ing region, the inpainted result and the initial image are
shown in (a), (b) and (¢), respectively. In the initial image,
spurious linear edges are reconstructed. In the inpainted
result, however, these edges are correctly replaced with
textured regions. This result shows that the initial image
does not need to be precise, i.e. approximate reconstruc-
tion is sufficient, since it is only used as a guide in the
later patch selection process.

The experimental result in Fig.8 shows the limitation
of our approach. The proposed method has failed in re-
constructing the rim of the barrel. The reason for this
failure can be summarized into two points: 1) in pasting
patches of the rim, they need to be rotated in accordance
with the normal of the rim, and 2) a guide is needed that
forces patch to be aligned on an arc. Although the pro-
posed method guides the patch pasting process by means
of an initial image, it assumes the underlying structure to
be composed of lines. For nonlinear structures, the
method would fail in constructing the initial image, as
shown in Fig.8(c). Extending the method to deal with
more general types of structures remains future work.

3.2,

Finally, we evaluated the computational time for the
proposed method and compared with that of the
Shift-Map [11], which is one of the fastest globally op-
timal methods. Since the computational time is expected
to depend on the size of the missing region, we measured
the time for images with different missing region size,
ranging from approximately 500 to 17,000 pixels. These
images were generated by resizing the same image with
the same missing region at different magnification ratio,
and then by clipping them into 480 x 360 pixel images
with the missing region centered. All the images were
processed on a PC with 2.7GHz CPU and 4.0 GB RAM.

Computational time
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The computational time for the proposed method and
Shift-map are shown in Fig.9(a). As can be seen, the
proposed method is more than 5 times faster than
Shift-Map for any missing region sizes. It should also be
noted how steadily the computational time for the pro-
posed method increases, whereas that for Shift-Map
increases quite unstably.

Further analysis on the computational time for the
proposed method is shown in Fig.9 (b). This table shows
the computational time for each process in the proposed
method, measured on an image with a missing region
size of approximately 10,000 pixels. Although the com-
putational time for the patch selection is dominant, it
only takes 0.54 sec, making the overall time less than a
second. This result shows that pruning candidate patches
using the initial image works effectively to speed up the
patch selection process.

4. Conclusion

A novel inpainting method based on structure estima-
tion has been proposed. Experimental results show the
proposed method is capable of preserving the underlying
structure in the missing region, while achieving more
than 5 times faster computational speed than the
state-of-the-art inpainting method. Currently, the method
only deals with images where the structure in the missing
region is composed of linear edges. Extending the
method to deal with more general type of structures re-
mains our future work.
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