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Abstract

Computer vision technology has a unique opportunity
to impact that study of children’s behavior, by providing a
means to automatically capture behavioral data in an non-
invasive manner and analyze behavioral interactions be-
tween children and their caregivers and peers. We briefly
outline a research agenda in Behavior Imaging, which tar-
gets the capture and analysis of social and communicative
behaviors. We present illustrative results from an on-going
project on the content-based retrieval of social games be-
tween children and adults from an unstructured video cor-
pus.

1 Introduction

Beginning in infancy, individuals acquire the social and
communication skills that are vital for a healthy and pro-
ductive life. Children with developmental delays face great
challenges in acquiring these skills, resulting in substantial
lifetime risks. Children with an Autism Spectrum Disor-
der (ASD) represent a particularly significant risk category,
due both to the increasing rate of diagnosis of ASD and its
consequences. One in 110 children in the U.S. have autism,
and the lifetime cost of care for an individual with ASD is
estimated at $3.2 million.

Autism is characterized by deficits in social interaction
and communication. Since the genetic basis for autism is
currently unclear, the detection and subsequent diagnose of
ASD depends critically on the measurement and analysis
of children’s behavior by trained professionals. Children
who have been identified to be at risk for ASD can benefit
from therapy, which targets their social and language devel-
opment needs. The delivery of such therapies and the as-
sessment of their effectiveness also depends critically upon
behavioral observations and measurements. Current meth-
ods for acquiring behavioral data are so labor-intensive as
to preclude large-scale screening and early interventions,
resulting in substantial disparities in outcomes.

We believe that computational sensing and modeling
techniques can play an important role in the capture, mea-
surement, analysis, and understanding of human behavior.
We refer to this research area as Behavior Imaging, by anal-
ogy to the medical imaging technologies that revolutionized
internal medicine in the 20th century. We believe that a
similar opportunity exists to create new capabilities for the
quantitative understanding of behavior.

This paper is organized as follows. In Section 2, we
briefly outline the potential contributions of computer vi-
sion methods to the study of children’s behavior and we
identify several research directions. In Section 3, we
present a case study on the development of computer vision
techniques to analyze social interactions in video. This case
study serves as an example to illustrate the unique problems
and opportunities that arise in developing sensing technolo-
gies for children’s behavior.
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2 Measuring Children’s Behavior

In research settings in psychology, video is frequently
used to record social interactions. In these situations, the
analysis of video is typically performed by researchers and
their assistants, who painstakingly hand-code relevant be-
haviors on a frame-by-frame basis. In clinical settings, as-
sessments of behavior are typically based on the direct ob-
servation of a child by an experienced clinician. In both
situations, the ability to automatically measure behavioral
variables using computer vision-based sensing could be
valuable in enabling the collection of behavioral data on
a large scale without requiring substantial human effort. In
this section, we outline several areas in which computer vi-
sion methods could be profitably applied to the study of
autism, and outline some of the resulting research chal-
lenges.

One potential application of behavior imaging is to sup-
port a large-scale, objective approach to screening and di-
agnosis. Recently, the American Academy of Pediatrics
recommended that autism-specific screening be conducted
at all 18- and 24-month well-child visits [10], in light of
growing evidence that early signs of autism may be iden-
tified within the first two years of life [12], and that early
initiation of treatment results in better outcomes [4]. In
autism screening, a standardized instrument is used to as-
sess whether a child is meeting developmental milestones
relating to social and communication skills.'

An example of a screening instrument is the Rapid-ABC
protocol developed by Abowd, Arriaga, and Ousley in a
joint collaboration between Georgia Tech and Emory Uni-
versity. The instrument consists of five scripted social in-
teractions designed to evoke behaviors that are relevant to
a diagnosis of autism. Within each interaction, the clini-
cian initiates a social bid to the child (e.g., calls the child’s
name, brings out a ball or a book) and then attempts to en-
gage the child in a brief social exchange, such as rolling the
ball back and forth or looking through pictures in a book.
The clinician then rates the presence and quality of a num-
ber of specific socio-communicative behaviors, such as the
extent to which the child shifted gaze between the ball and
the clinician’s eyes (joint attention), imitated her actions,
engaged in a turn-taking game, and the ease with which the
child could be engaged in the various activities.

Behavior imaging technology can play several roles in
support of a screening instrument such as the Rapid-ABC.
It can provide cost-effective tools for managing large col-
lections of video and other data sources recorded during
screening sessions. In particular, it can enable summariza-
tion, content-based retrieval, visualization, and comparison
of observational data across populations and over time, to
an extent that is not feasible using conventional manual
methods. In addition, it can enable clinicians with less spe-
cialized training to collect relevant behavioral data for later

! Additional information about milestones, including video examples,
are available at the Autism Speaks website: www.autismspeaks.org



analysis by a specialist.

The analysis of social interactions between a child and
an adult, as in the context of the Rapid-ABC, poses several
interesting avenues for computer vision research. One area
of importance is the measurement of affect and attention.
While the assessment of emotion based on facial expres-
sions (facial affect) has been well-studied in adults, rela-
tively little work has been done with children. Technolo-
gies for face tracking and expression analysis often rely
on carefully-calibrated models which assume that a sub-
ject is cooperative and can provide training examples. In
contrast, the analysis of children’s facial behavior requires
approaches which minimize the need for cooperation and
training data. Children communicate attention in a variety
of ways, including hand gestures and gaze behaviors. The
challenge of sensing these behaviors in a non-invasive way
(e.g. without requiring the children to remain still or wear
special glasses or bracelets, which could interfere with their
natural expression of behavior), is an open research area.
While commercial gaze tracking systems can produce good
results for adults wearing special glasses or children look-
ing at video monitors, there remains a need to accurately
measure a child’s gaze in a dynamic, unconstrained envi-
ronment.

A second area of research opportunity concerns the inte-
gration of gesture, affect, and other cues in the interpreta-
tion of dyadic interactions (in the case of Rapid-ABC, the
dyad consists of the clinician and the child). Previous re-
search in activity recognition has tended to focus on de-
scribing the activity of a single actor in terms of a set of ac-
tions or other primitives. In social interactions, the assess-
ment of whether or not a child is engaged depends not just
on what they are doing, but also on the timing of their facial
displays, gestures, and so forth in relation to the actions of
the other person. Thus an integrated assessment of social
behavior requires an analysis of the patterning between the
individuals as well as a description of what they are doing.
This analysis is further complicated by the fact that social
interactions can take on a wide variety of forms. In con-
trast, previous work on conversational interactions between
adults (as in the case of meeting understanding or dialog
systems), could draw from a rich literature on task model-
ing and dialog acts, as well as knowledge of the syntactic
structure and lexical properties of speech.

A further opportunity for engagement between computer
vision and psychology concerns the assessment of behavior
in naturalistic settings. The gap between the behaviors that
children exhibit in a clinical setting and their behaviors in a
familiar, natural environment such as their home or school,
is a long-standing issue in the assessment and treatment of
behavioral disorders. Previous computer vision research
on visual surveillance has addressed the noninvasive mon-
itoring of groups of individuals and their interactions, and
could be extended to address the assessment of children’s
behavior in naturalistic settings.

In autism, one important example of a naturalistic behav-
ior is the generation and reception of social bids (attempts
to initiate a social interaction). Lack of initiation of so-
cial interactions is a basic risk factor for ASD [3]. Social
bids can take many forms, including name-calling and other
vocal greetings, gaze overtures (attempts to make eye con-
tact), as well as simply approaching another child and re-
maining in their vicinity. Responses can include orienting
behaviors (turning towards the initiator) and avoidance be-
haviors. It would be extremely valuable if these behaviors
could be measured in a setting such as a classroom. Specif-
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ically, could we reconstruct a complete record of the so-
cial interactions that occurred between a group of children
and their teachers based on multiple streams of audio-visual
data?

Finally, given a video record containing a series of in-
teractions of interest, along with many extraneous events,
how can we provide tools for efficiently searching and re-
trieving the behaviors of interest? In classroom settings, for
example, it could be valuable to be able to retrieve all ex-
amples of a problem behavior exhibited by a particular stu-
dent, in order to identify possible antecedents that may have
helped to trigger it. Previous researchers have focused on
giving teachers the tools to be able to capture such behav-
iors at their time of occurrence [8]. These could be comple-
mented by methods for content-based video retrieval. We
will present a case study on the content-based retrieval of
social games in Section 3.

Concerns about privacy and the protection of vulnera-
ble populations are an integral part of any research program
involving children’s behavior. This is particularly true in
video-based analysis, where a child’s face may be an impor-
tant source of behavioral information and therefore cannot
be hidden. These concerns can be expressed as a tradeoff
between the benefits of a sensing solution and its costs, rel-
ative to other alternatives. As part of our on-going research
efforts, we are assembling a database of children’s behav-
iors, collected with appropriate IRB approvals, which we
intend to share with the research community. Our project
website, www.cbs.gatech.edu, contains more details about
these datasets and our research objectives in behavior imag-
ing.

3 Retrieval of Social Games from Video

In this section, we describe our recent efforts in develop-
ing computer vision methods for the analysis and retrieval
of social games from video. We begin with a brief de-
scription of social games and their relevance in the psychol-
ogy literature. We then describe a representation of social
games as quasi-periodic patterns and describe a segmenta-
tion approach which can separate such patterns from extra-
neous background motions. We conclude by presenting the
results of several experimental evaluations, which demon-
strate the benefit of the proposed approach.

3.1 Social Games

Social games, such as a “peek-a-boo” or “patty cake,”
consist of repetitions of stylized, turn-taking interactions
between a child and a caregiver or peer. In the case of peek-
a-boo, the game is played by repeatedly covering one’s face
(e.g. with one’s hands) and then uncovering it to surprise
and please the baby. The parent regulates the climax of the
baby’s laughter by changing the rhythm of the game, and
by varying the manner in which the face is covered and un-
covered. As a result, the duration of each repetition of the
game is different, but the repetitions vary within a permis-
sible range accepted by both players.

Social games are a key element of an infant’s earliest so-
cial interactions, and they play an important role in facilitat-
ing their social and cognitive development [2]. As a conse-
quence, they provide a useful vehicle for the study of many
aspects of child development, including social processes
and emotion, social expectations, and non-verbal commu-
nication skills [5]. Individuals who are at risk for autism
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Figure 1. Illustration of the process of quasi-periodic pattern extraction, which identifies video sequences containing

repeating interactions, such as social games.

frequently exhibit atypical sensory-motor and social behav-
iors, and the identification of these behaviors can be used to
support early screening for ASD.

A representative example of the use of video-based mea-
surements of social behavior in autism is the retrospective
video study, which was beneficial in establishing the fea-
sibility of early diagnosis of ASD [1]. These studies were
based on analyzing home movie footage of children under
2 years in age. The children could be divided into three
groups: typically-developing children, children who were
later diagnosed with an ASD, and children with other de-
velopmental delays. By painstakingly searching through
the collected videos and hand-coding social interactions, re-
searchers were able to identify early risk factors for ASD.

The labor cost involved in searching videos for relevant
behavioral content and quantifying social interactions, once
they are identified, is a barrier to the wide-spread video-
based analysis of behavior. In this section, we present some
recently-developed video analysis techniques that support
the automatic identification of social games, as well as more
general forms of repetitive social interactions, within un-
structured video footage.

3.2 Social Games as Quasi-Periodic Patterns

In order to retrieve social games and other forms of so-
cial interaction from unstructured video, it is necessary to
identify the characteristics of these interactions that distin-
guish them from other categories of video content. This is
challenging due to the great variety of types of social in-
teractions that can occur, as well as the conventional chal-
lenges inherent to activity recognition, such as variations in
camera angle, camera motion, zooming, lighting, and sub-
ject clothing and appearance. In addition, videos obtained
in naturalistic settings will contain clutter, in the form of ex-
traneous movement patterns, which further complicate the
analysis.

Our starting point is to focus on the repetitive property
of social games, the fact that the pattern of the interaction
will exhibit repetitions with variations as the game is played
multiple times. We propose that social games in video can
be defined by quasi-periodic spatio-temporal patterns. This
is in contrast to periodic motions, such as walking, which
possess a well-defined period and uniform actions.

Our overall approach to modeling social games is illus-
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trated in Figure 1. The first step is to encode the video con-
tent over a window of frames using a visual word codebook
derived from the space-time interest points of Laptev [9].
In order to obtain a description of the entire video sequence
as a quasi-periodic pattern, it is necessary to identify the
keyframes corresponding to repeating elements of the in-
teraction. We accomplish this by encoding each frame by
a histogram of its visual word occurrences. We then clus-
ter the frames based on their histogram features to identify
a set of keyframes. Each frame is matched to its closest
keyframe, providing an encoding of the video sequence as
a sequence of keyframe labels. The co-occurrence of these
labels in time defines a quasi-periodic pattern. We use a suf-
fix tree to extract the recurring pattern set for the sequence,
based on a heuristic scoring function that identifies valid
quasi-periodic patterns. More details can be found in [13].

3.3 Segmenting Repeating Interactions

A basic challenge in the analysis of social interactions in
video is the fact that such interactions are rarely captured in
isolation. Video footage obtained from birthday parties or
other home recordings will inevitably include multiple ac-
tors and other forms of distractors including camera motion.
In order to exploit the repetitive nature of social interactions
as a signature for identification and retrieval, it is necessary
to separate these movement patterns from the background.

We approach this problem using the tools of causal anal-
ysis, which make it possible to decompose a video repre-
sentation into sets of patterns which are temporally-related.
It is natural to invoke the notion of causality when attempt-
ing to explain a video sequence. When domain models are
available, as in the case of naive physics or sporting events,
causal relations can be expressed in terms of events with
“high-level” semantic meaning. In our case, we are in-
terested in models of causality which could be applied to
lower-level video features, making it possible to segment
features into groups which could serve as the starting point
for quasi-periodic pattern detection.

Recently we have proposed an approach to video seg-
mentation [11] based on a classical formulation of causal
analysis for time series measurements, originally due to
Clive Granger [7]. Granger proposed that a time series Y
could be considered to causally influence a time series X if
predictions of future values of X based on the joint history
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of X and Y were more accurate than predictions based on
X alone. While this model of causality does not propose a
mechanism for the interaction between the variables, it has
the advantage of being formulated directly in terms of mea-
surement data and therefore applicable to a broad range of
temporal processes.

A key challenge in the application of temporal causal
analysis to video interpretation is to devise a causal test
which is suitable for discrete representations in which the
video is characterized by a set of spatio-temporal events,
such as a set of space-time visual words. Our key insight
is that a set of visual words that describe a video clip can
be interpreted as an instantiation of a multivariate point
process. Each visual word occurs in a subset of video
frames. We denote these occurrences as low-level visual
events, whose sample times are governed by a point pro-
cess model. This representation is illustrated in Figure 2,
which depicts a simple patty-cake game with two players
and its associated point process representation. The point
process representation encodes the times of occurrence (i.e.
frame numbers) for each visual word. Visual words which
are causally-related, such as the green, red, and blue words
in Figure 2(e), exhibit a regular pattern of arrival times,
reflecting their co-occurrence. In contrast, the occurrence
times for the yellow word, which corresponds to the move-
ment of an independently-moving bystander, are clearly un-
correlated with the others.

The statistical relationship between a pair of point pro-
cesses can be captured by its cross-spectral density func-
tion, which can be estimated nonparametrically from sam-
ple data. The cross-spectrum is the Fourier transform of the
cross-covariance density function for a pair of processes,
while the auto-spectrum of a single process is the Fourier
transform of the auto-covariance density function. The
cross-spectrums and auto-spectrums for a set of processes
can be organized into a spectral matrix, which is illustrated
in Figure 3(a) for the point processes of Figure 2(e).

Given the spectral matrix, we can compute the Granger
causality [7] for each pair of point processes using a fre-
quency domain formulation due to Geweke [6]. Intu-
itively, the frequency-dependent Granger causality measure
Gi—;(f) captures the extent to which process 7 can predict
the statistics of process j at frequency f. The key step in
computing these causality measures is to factorize the spec-
tral matrix as

S(f) = T(HET(f)", (M

where T(f) is the transfer function between processes and
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3} is the noise process covariance. The causal measure is
then given by
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The measure from j to ¢ follows by symmetry. Note that the
measure is asymmetric, with G,_,;(f) # G,—:(f). Fig-
ure 3(b) illustrates the causal measures corresponding to the
processes of Figure 2(e).

A scalar measure of causality between processes ¢ and j
can be obtained by integrating Equation 2 over frequency,
obtaining the causal score C(i, j) = > Gj~i(f), Vi#],
and C(i,i) = 0,Vi. An empirical null hypothesis test-
ing framework can be used to determine a threshold on
each score corresponding to a desired significance level.
Causal scores and associated thresholds are illustrated in
Figure 3(c). Thresholding the causal scores results in the
causal matrix, depicted in Figure 3(d), in which the zero
entries correspond to a lack of causal influence. We can
interpret this matrix as the adjacency matrix of a graph, re-
sulting in the causal graph shown in Figure 3(e). We refer to
the connected components of this graph as causal sets. Note
that the graph in Figure 3(e) contains two causal sets, corre-
sponding to the pattycake interaction (G, R, and B) and the
independent noise events (Y). The causal sets provide a seg-
mentation of the video based on the temporal interactions
between visual event data. In this example, they correctly
identify the presence of two independent processes.

While there have been many previous approaches to
video segmentation, our method is unique in that it focuses
on the temporal interaction between features over extended
timescales. Unlike previous approaches to causal analysis
of video, our method does not require the ability to iden-
tify semantically-meaningful events a priori. As a conse-
quence, it can be used to organize complex video footage
into salient groups of features, as a precursor to further anal-
ysis. We believe such an approach is particularly useful in
the analysis of social interactions in real-world video. So-
cial interactions, such as the social games illustrated in Fig-
ures 5 and 6, can exhibit a great deal of variability, making it
difficult to decompose them into a pre-defined set of actions
which is complete, in the sense that it covers all possible in-
stantiations of the game. At the same time, it is reasonable
to expect that there will exist one or more visual words that
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Figure 4. Retrieval Performance on GT Child Play
dataset. Solid lines represent the use of causal sets,
while dashed lines represent the holistic application
of quasi-periodic analysis.

capture the repeating interaction between multiple individ-
uals. An attempt to analyze social games based on a holistic
encoding of features from the entire video is likely to fail,
due the presence of extraneous objects and background mo-
tions. Temporal causal analysis provides a means to sepa-
rate these irrelevant elements from the features correspond-
ing to the social interaction, paving the way for higher-level
analysis. We illustrate the benefit of this approach experi-
mentally in Section 3.4.3.

3.4 Experiments in Social Game Retrieval

We collected the GT Child Play Dataset for the purpose
of evaluating social game retrieval, by recording parent-
child interactions using a hand-held camcorder in a lab-
oratory setting. There are three videos corresponding to
three sets of adults and children. The children were be-
tween 2 and 4 years old. The adults were instructed to
freely mix social games with less structured interactions
during the sessions. We asked them to include the games
roll-the-ball, peek-a-boo and pattycake. During the record-
ing session, the videographer tried to keep the interactions
centered within the camera view. The videos frequently dis-
play small amounts of camera motion. Not all the listed
games were played by all the children, due to their own
interests. Some new games were introduced during the ses-
sions, resulting in the following additions to our final list
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of social games: “playing-drum-in-turn”, “bowling”, “give-
me-five”, “tickle”, “give-and-take”, “hot-potato”, “frisbee”
and “knock-hat-down”. Ground truth labels were manually
specified by the experimenter. A video segment was labeled
as game only if a game interaction occurred at least twice

in that segment, and was otherwise labeled nongame.
3.4.1 Mined patterns from videos of social games

Given a video of a social game, we demonstrate that the
method for quasi-periodic pattern analysis described in Sec-
tion 3.2 can find patterns that correspond to meaningful
stages of the game. We illustrate this with two examples:
a peak-a-boo game depicted in Figure 5, and a patty-cake
game illustrated in Figure 6. The interest points shown in
each figure are color-coded by their visual words. Each pat-
tern symbol, such as 2, corresponds to a sequence of frames,
and the center frame is chosen for illustrative purposes in
the figure.

The frames shown in Figure 5 correspond to the mined
pattern Pat 2-1-5-1-7 for the peak-a-boo game. This pat-
tern captures the process in which the toy appears and then
disappears, along with the baby’s response. Event 2 is the
event in which the toy is held closest to the baby; event 5 is
where the toy is half-hidden but still in the baby’s view, and
the baby is reaching for the toy; In event 7, the baby reaches
out furthest for the hidden toy. Figure 5 illustrates two repe-
titions of the pattern. Examination of the frame numbers re-
veals significant variation in the durations that characterize
a quasi-periodic pattern. Note also that while correspond-
ing frames depict similar stages of the game, there is signif-
icant variation in the child’s pose and other aspects of the
scene from one repetition to the next.

Similarly, Figure 6 shows the two occurrences of Pat
2-4-9-6 mined from a pattycake video. Pat 2-4-9-6 de-
picts clapping right hands (label 2), withdrawing and clap-
ping one’s own hands (label 4), clapping left hands (label
9), withdrawing and clapping one’s own hands again (la-
bel 6). These examples illustrate the ability of the quasi-
periodic pattern method to identify meaningful stages in
social games in spite of significant sources of variability
in timing and content between repetitions.

3.4.2 Segmentation of visual word patterns in
videos

We evaluated our method for temporal causal analysis
on several different examples of video footage: Fig. 8(a)
shows a sequence with two independent events: ball-throw
being played by two actors while one person is eating.
Overlayed on the images are the visual words correspond-
ing to the events, and we demonstrate in Fig. 8(a) that
we can effectively group the visual words into two mean-
ingful sets, each corresponding to an independent event.
Fig. 8(b) & 8(c) show two realistic interactions of a hand-
shake from HOHA dataset [9], and overlayed on the se-
quence are visual words corresponding to the video se-
quence. As can be seen in Fig. 8(b) & 8(d), our analysis
can segment the handshake motion, shown in green, in this
very complex scene. Fig. 8(e) & 8(g) show two sequences
of parent-child interactions from the GT Child Play dataset,
and Fig. 8(f) & 8(h) shows the grouped visual words. Note
that the visual words corresponding to the interaction be-
tween the parent and child are correctly grouped together
by our analysis, and those corresponding to other move-
ments (such as the soccer ball or spurious features due to



camera motion) are separated from the interaction.
3.4.3 Social game retrieval

We conducted quantitative experiments to evaluate the
effectiveness of visual word segmentation and quasi-
periodic pattern analysis in the task of retrieving social
games from unstructured video collections. In this exper-
iment, we used a sliding window to analyze the video in
overlapping segments. We computed visual words within
each video segment and then used temporal causal analy-
sis to group these visual words into non-interacting causal
sets. We then used the method of quasi-periodic pattern ex-
traction described in Section 3.2 to identify the presence of
a social game in each causal set. The result of this anal-
ysis is illustrated in Figure 7 for two example sequences
from the GT Child Play dataset. We can see that the causal
sets containing social games are detected correctly (green
color), while the movement of the soccer ball in Fig. 7(b)
and other spurious features generated by camera movement
are successfully rejected as non-game events (red color).

The precision-recall curves for the three video sequences
in our dataset are shown in Figure 4. The solid lines denote
the retrieval performance when quasi-periodic analysis is
applied to causal sets, while the dotted lines give the per-
formance when the analysis is applied to an entire frame
without segmentation (the holistic approach first presented
in [13]). We can see that grouping words based on causal
analysis leads to a significant increase in retrieval perfor-
mance.

4 Conclusion

There is an opportunity for computer vision researchers
to partner with psychologists in the development and appli-
cation of data-driven methods for capturing, modeling, and
analyzing the social and communicative behavior of chil-
dren and adults. Such a partnership has the potential for
great impact in the study of disorders such as autism, which
are fundamentally associated with deficits in socialization
and communication. Our research efforts on the problem of
retrieving social games from unstructured video collections
has led us to develop new methods for describing social
interactions via quasi-periodic pattern analysis and for seg-
menting video based on temporal causal analysis. As part
of our on-going research efforts, we are creating a dataset
of social interactions which will be made available to the
research community. See www.cbs.gatech.edu for details.
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(d) Frame 260, label 1 (e) Frame 266, label 7

(f) Frame 526, label 2 (g) Frame 547, label 1 (h) Frame 570, label 5 (i) Frame 585, label 1 (j) Frame 598, label 7

Figure 5. Mined quasi-periodic pattern 2-1-5-1-7 and its two occurrences in the video PeekabooMonkey (downloaded
from YouTube).

(e) Frame 155, label 2 (f} Frame 161, label 4 (g) Frame 167, label 9 (h) Frame 173, label 6

Figure 6. Mined quasi-periodic pattern 2-4-9-6 and two of its occurrences in the video pattycake (downloaded from
YouTube).

g g
. . . (b) Sequence of roll-ball from GT Child Play dataset. . .
Figure 7. Visual words corresponding to game are shown in green, and those corresponding to non-game are shown in
red.
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(b) Handshake sequence from the movie Forrest Gump

(h) Roll-ball sequence between father and daughter

Figure 8. Segmentation Results. Top Row: Original Visual Words. Bottom Row: Grouped Events
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