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Abstract

The aim of this paper is to present an automatic,
image-based system for catenary maintenance, a novel
application of machine vision which has no equivalent
today. This study focuses on the detection of droppers
in catenary staves. The system takes benefit from the
fact that dropper location inside catenary staves follows
mounting rules, an information that is integrated into
a top-down approach in order to speed up and make
reliable the extraction of droppers. Results obtained on
a large database of real images are very satisfying and
enable for continuing investigations for dropper fault
detection.

1 Industrial background

Maintenance of railway infrastructure consists in
checking the presence and the integrity of each ele-
ment of the catenary stave. Today maintenance is
carried out by visual inspection. The Innovation and
Research Department of the French railways (SNCF)
plans to automate this long and fastidious task. A
dedicated acquisition system has thus been embedded
inside a TGV coach [4]. The speed of the TGV be-
ing 320km/h, a high frame acquisition rate is required
(53kHz). Thanks to a regulation of the obturation rate
by the train speed, images are not fuzzy. Moreover, fil-
ters compensate for bad weather conditions. Images
are acquired perpendicularly to the catenary. Their
size is 1024x768 pixels and each pixel is coded on an
8-bit-gray level scale. For each image, the acquisition
position on the line is provided. Horizontal resolution
is 1.8 mm per pixel when the train speed is constant,
but the resolution may vary during acceleration or de-
celeration.

Images represent adjacent segments of the catenary
stave. A stave is made of about 40 images. A cate-
nary stave is most often a single stave, with one pair
of contact wire and carrying wire (Figure 1).

Figure 1: Successive images of a single catenary stave.

The contact wire provides electricity to train and

the carrying wire supports the contact wire. Three
vertical elements support the two wires: supporting
arms, droppers and droppers with electrical connection
(DEC). The part of the catenary that is delimited by
two supporting arms is called a catenary stave (Figure
2). The number of elements and their position inside a
catenary stave are specified in the so-called mounting
rules.

Figure 2: Overview of a catenary stave.

The aim of the study is to conceive and develop
an automatic image processing system that allows to
identify the catenary elements as described earlier, us-
ing the mounting rules. The ultimate goal will then be
to detect faults on identified elements (typically, frayed
contact wires, unusual objects on the catenary, broken
droppers, faulty electrical connection on droppers...).
In this paper we will solely focus on the dropper recog-
nition part, as being a preliminary task to the fault
detection process. Indeed, droppers are structural ele-
ments of the catenary stave and the knowledge of their
number and type order is of crucial importance to iden-
tify the type of catenary stave we deal with. Con-
versely, using this knowledge to guide the dropper ex-
traction process would ease the fault detection. Let us
stress the fact that such an automatic analysis of the
catenary droppers is an original machine vision appli-
cation which has no equivalent today. To the best of
our knowledge, only one similar system has been devel-
oped in the world: the work reported in [7] describes
an onboard vision system for acquisition of catenary
images in which automatic image processing is quite
limited in that sense that catenary elements are iden-
tified manually before an automatic defect recognition
is performed on manually isolated elements.

The remaining of the paper is organized as follows.
In section 2 we justify the use of a top-down approach
to extract droppers from catenary stave images and
give an overview of the proposed system. We detail
in section 3 the four steps to detect and classify drop-
pers automatically and show how a priori knowledge
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can be used to perform a reliable detection of drop-
pers; we give some experimental results on a significant
database of real catenary stave images. We conclude in
section 4 by some future works on this very challenging
machine vision application.

2 Overview of the Proposed Approach

Identifying the catenary elements can be seen as a
scene analysis problem, for which two main approaches
may be used [1]:

• a bottom-up approach: simple, element-
independent features are extracted from the
image. These features are gathered and knowl-
edge is incorporated into the recognition process
in order to finally identify the objects.

• a top-down approach: this approach relies on the
hypothesis that the image contains a particular
object and thus consists in predicting the presence
of features in the image, using high-level a priori
knowledge.

The model in our application relies on the mount-
ing rules which describe the different types of cate-
nary staves. They indicate, for each type of catenary
stave, the number and the order of droppers and drop-
pers with electrical connection as well as the space be-
tween them (see for example Figure 4). This a pri-
ori knowledge can be very useful as it constrains the
model that can be used to make the automatic detec-
tion of droppers more reliable. However, the model
is not always fully applicable, i.e. not applicable on
all catenary staves as horizontal resolution of the im-
ages may vary during acquisition due to train acceler-
ations and decelerations. For this reason, we had first
designed a bottom-up approach in which vertical and
horizontal components were first segmented and clas-
sified without a priori knowledge, then checked and
corrected through alignment of the whole stave models
[5]. Though providing good results in terms of pre-
cision and recall in dropper extraction, this approach
suffered from high computation time due to the fact
that the analysis should necessarily be conducted on
the whole image of the catenary stave. Therefore, we
have rather turned toward the investigation of the top-
down approach we report in this paper, in which a pri-
ori knowledge is used to guide the dropper extraction
process.

An overview of our system is shown in Figure 3. The
input of the system is a set of images representing the
catenary stave. In this top-down approach, a priori
knowledge is first used to roughly localize droppers.
More precisely, subparts of the whole catenary stave
image that may contain droppers are isolated thanks
to geometric models. The most likely anchor points of
each dropper are then detected on each local binarized
image and characterized so as to discriminate between
”simple droppers” and ”droppers with electrical con-
nections”. A trellis of dropper hypotheses (dropper
classes along with their probabilities) is then analyzed
to search for the most likely path through the align-
ment of dropper sequence models of catenary staves.
The output of the system is a sequence of dropper lo-
cations and classes that will be used in a further step
for defect detection.

Figure 3: Overview of the proposed system.

3 Automatic Detection of Droppers

We now detail in this section the four steps of our
top-down approach to detect droppers. Let us recall
that the input of our system is a whole image of a
catenary stave obtained from the concatenation of sin-
gle images. Typically, the whole image is 30000 pix-
els long made up of the concatenation of about forty
1024x768 images (typically a 1.38m-long subpart of the
catenary).

3.1 Rough localization of droppers

In this first step, a priori knowledge about mounting
rules is used to limit the search for droppers to the most
likely subparts of the whole image and thus to pro-
vide hypotheses of dropper locations without needing
a ”blind” analysis of the whole image. Note that each
catenary stave must respect specific mounting rules
that set the distance between two consecutive drop-
pers depending on the length of the catenary stave as
shown in Figure 4.

The database of catenary models contains 74 types
of stave or models ranging from the simplest one made
of a sequence of 4 droppers to the most complex made
of 15 elements combining droppers and droppers with
electrical connections. Therefore, one way to limit the
search for droppers is to filter this database of cate-
nary models by estimating the distance between two
supporting arms, i.e. the length of the catenary stave
[4, 5]. This length acts as a discriminative feature that
enables to predict roughly the location of dropper hy-
potheses and thus to segment the whole image of the
catenary stave into those subparts of the whole im-
age that contain a dropper. Note that due to small
train accelerations and decelerations during image ac-
quisition, width of the subparts of the whole image
that will be further analyzed in the next step is chosen
large enough to take into account possible variations of
horizontal resolution (typically 1500 pixels).
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Figure 4: Mounting rules of a 63m-long catenary stave
made up of 7 droppers (D) and its corresponding ge-
ometric model defined by the inter-dropper distances
between two supporting arms (SA).

3.2 Detection of dropper anchor point

The input of this stage is a subpart (1024x1500 pix-
els) of the whole image segmented from the dropper
rough localization stage, where a dropper is assumed
to be present. As the elements of the catenary are
quite linear, they may thus be detected by thresholding
horizontal and vertical projections of the image. But
images are not as straightforward to process as they
seem. Indeed, they show inhomogeneous noisy back-
ground, that has a poor contrast with the droppers.
Droppers are also very thin, only 2 to 3 pixels wide.
Furthermore, some objects are darker and some other
are lighter than the background (Figure 5). Note that
for visualization purposes, all images presented in this
paper have been manually contrast-enhanced.

Figure 5: Dark and light objects in a catenary stave.

In order to simplify the anchor point detection pro-
cess, the image is binarized. Because of the back-
ground inhomogeneity, binarization is performed using
TopHat and BotHat morphological operators (Equa-
tion 1). The TopHat (respectively BotHat) operator
allows to segment elements which are lighter (respec-
tively darker) than the background [6].

TopHat = Image−Opening(Image)
BotHat = Closing(Image)− Image

(1)

The two structuring elements for these operators are
constructed according to the shape and the size of the

elements to be detected. They are 10-pixel long hori-
zontal and vertical lines.

A binarization result is shown on Figure 6.

Figure 6: (left) Original image, (right) Binarized im-
age.

Segmentation into vertical and horizontal compo-
nents is then performed by thresholding the projections
of the binarized image along both directions:

• vertically, in order to detect vertical elements (sup-
porting arms, droppers and droppers with electri-
cal connection) ;

• horizontally, in order to detect horizontal elements
(contact wire and carrying wire). Since the wire
horizontality is not always maintained, the rota-
tion angle is taken into account before projecting
the image, by means of a Radon transform [3].

By intersecting vertical and horizontal elements, two
dropper anchor points are thus localized in the bina-
rized image.

3.3 Classification of droppers

To discriminate between simple droppers and drop-
pers with electrical connections, one can observe in
Figure 7 that difference between these two elements
is simply the presence of a larger area of pixels at wire-
dropper intersection in favor of droppers with electrical
connections. A 2-feature vector based on pixel densi-
ties extracted from the neighborhood of each anchor
point seems therefore to be discriminative enough to
classify droppers.

Figure 7: (left) Simple dropper, (right) Dropper with
electrical connections.
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Classification of droppers is performed by a 2-5-
2 MLP. This classifier has been chosen because it is
fast in decision, provides good generalization proper-
ties, and can output posterior probabilities for sequence
model alignment [2]. The output of this stage is finally
a sequence of classification hypotheses, each one asso-
ciated with a posterior probability. The next stage will
consist in correcting the possible errors of classification
by aligning various models of dropper sequence.

3.4 Alignment on catenary stave models

In a top-down approach, recognition is mainly a ver-
ification step that searches for aligning models on ob-
servation sequences output by the classification stage.
Therefore, the alignment of the catenary stave models
consists in searching for the optimal path through dy-
namic programming for example. In our case, it simply
consists in multiplying probabilities provided by the
MLP-classifier through model paths. The winner path
is that one with the highest final probability as shown
in Figure 8.

Figure 8: Alignment on the MLP results of two cate-
nary stave models made up of 7 droppers: M1 with 7
simple droppers (D) and M2 with 4 simple droppers
(D) and 3 droppers with electrical connections (DEC).

3.5 Experiments and results

Experiments for dropper detection have been con-
ducted on a database of 689 whole images of catenary
staves representing in total 5161 droppers to be de-
tected, for which the ground truth has been obtained
by manually tracing a bounding box around the drop-
pers. Image base is split into:

• a learning base (474 catenary stave images) : 2752
droppers, 803 DEC ;

• and a test base (215 catenary stave images) : 1262
droppers, 344 DEC.

Let us stress on the fact that the dropper rough lo-
calization succeeds in segmenting the whole images of
catenary stave into subparts containing a dropper (ei-
ther simple or with electrical connection) with a 100%
segmentation rate. As for the correct dropper recog-
nition rate is concerned, Table 1 presents the perfor-
mance of our system before and after model alignment.
As one can see, the correct classification rate before
alignment (MLP solely) is pretty good for simple drop-
pers but is somehow critical for droppers with electrical
connection. That comes essentially from the binarisa-
tion of the segmented subparts of the whole images that
introduces some spurious densities of pixels around the
anchor points. However, the performance of our system
after model alignment are quite satisfying and allow the
French Railways to now investigate fault detection on
catenary staves.

Table 1: Correct classification rate
Before After

alignement alignement
Simple droppers 99.36% 99.68%

DEC 95.93% 99.13%
Average on droppers 98.62% 99.56%

Recall and precision rates are also two widely used
measures for assessing the quality of results of detection
and information extraction tasks.

• recall, which is a measure of the ability of the sys-
tem to localize and recognize all presented drop-
pers, is 99.06% ;

• precision, which measures the ability of the sys-
tem to provide only correct hypothesis and thus
to limit the number of false alarms, is 99.06%.

Both rates are satisfying and show the good perfor-
mance of our system.

4 Conclusion and perspectives

We have presented in this paper a top-down ap-
proach to automatically extract droppers from cate-
nary stave images and have shown that a priori knowl-
edge can be used to perform a reliable detection of
droppers. The experimental results obtained on a sig-
nificant database of real catenary stave images have
demonstrated the interest of our approach which is an
original and real machine vision application that has
no equivalent today. Future works on this very chal-
lenging machine vision application will deal now with
defect detection, particularly some complex tasks such
as real-time detection of frayed contact wires, of un-
usual objects on the catenary, of broken droppers, or
of faulty electrical connection on droppers.
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