
Lavatube – A Software Framework for Computer Vision Research and
Development

Kenji Iwata, Yutaka Satoh and Katsuhiko Sakaue
National Institute of Advanced Industrial Science and Technology (AIST)

AIST Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
kenji.iwata@aist.go.jp

Abstract

We develop Lavatube as a software framework for ef-
ficient research, development, and education. Lavatube is
an object-oriented framework optimized for constructing
a computer vision system, particularly a video and image
processing system. Lavatube enables a description of a
processing extension by combining various functional
components. Since the data flow is easy to describe by
graph-connecting icons on a GUI, a system can be
created intuitively. The standard support of input from a
USB camera and various video files makes complicated
work or knowledge unnecessary. For efficient and
clear-cut system construction, Lavatube also provides
functions for the dynamic generation of parameter setting
dialog boxes and for perpetuation by XML. Some actual
video processing cases as examples are also introduced.

1. Introduction

A computer vision system captures information from
the external world as image data by using a camera and
other devices, and analyzes the images on a computer for
studying or measuring [1]. This kind of system is used as
a major means of inspection, especially for semiconduc-
tors and electronic boards, because objects can be
measured without contact. The range of applications, such
as security, robot vision, medicine, welfare, and sports,
has been growing even more in recent years.

A computer vision system that is expected to be applied
so widely requires high-level knowledge and program-
ming techniques for its design and adjustment. So, at a
company or a university, what kind of abilities should be
acquired to learn this system from the beginning? There is
a lot of substantially important knowledge, such as sta-
tistics and geometry. In reality, however, he or she faces
such problems as difficult programming for image ac-
quisition from a camera or time-consuming analysis of a
predecessor's program that requires great overhead.

Even an experienced person tends not to be committed
to programming because it requires a lot of time to con-
struct a framework where arbitrary processing can be
visualized and various parameters can be adjusted in real
time. This consequently makes it necessary, yet some-
times impossible, to evaluate installed algorithms and set
parameters satisfactorily.

To solve these problems, we developed Lavatube as a
visual programming framework. Lavatube has the fol-
lowing advantages:
(1) A system can be constructed easily by

graph-connecting icons that express various func-

tions on a graphical user interface (GUI), such as the
one shown in figure 1.

(2) By arranging icons with the capturing function, a
USB camera and various video files (AVI, MPEG,
etc.) can be used as input. This realizes online and
offline experiments using previously recorded videos
on a single platform.

(3) Parameter setting dialog boxes can be generated
dynamically and adjusted by viewing of the
processing results online.

(4) Persistence by XML enables storage and reproduc-
tion of working environment.

(5) The framework operates at high speed with ex-
tremely small overhead. Since parallel flows are
automatically threaded for parallel execution, this
programming makes processing even faster than or-
dinary programming.

Previously, the image processing environments, such
as Khoros [2] and XITE [3] have been developed. More
recently however, many visual programming environ-
ments for processing flows visually through this type of
GUI have been available commercially. For example,
MAX/MSP [4], which is mainly used by artists, is a visual
programming environment extended from voice
processing to video processing. Other marketed products
include MATLAB/Simulink [5] for simulation and
AVS/Express [6] for visualization. These are basically
visual programming environments in which existing
modules are combined to create a processing flow. If there
are not enough modules, extension modules are created
by using C or other languages. Since existing modules are
not adequate for creating new algorithms, programmers
need to create extension modules.

Lavatube was developed not as a visual programming
environment via a GUI but rather as an object-oriented
framework optimized for video and image processing.
Lavatube is designed so that users can develop original
function extensions easily by combining various func-
tional components. These patches are compatible with

Figure 1. A GUI of Lavatube

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN13-26

487

GUIs, XML, and other support functions, and realize an
efficient research and development environment, in
which such functions are immediately available as a user
interface, visualization, and perpetuation.

This paper outlines the Lavatube functions and intro-
duces actual cases.

2. Outline of Lavatube

Lavatube is an object-oriented framework that sup-
ports research on video and image processing, computer
vision, and also trial application programming and tuning.
The characteristic functions of Lavatube are described
below.

2.1� Description of Data Flow by the GUI
In the GUI of Lavatube, each process (called a "work

patch") is expressed as an icon. By connecting the input
and output of each icon using a mouse, a data flow can be
described very easily. Figure 2 shows an example of a
data flow description. In this example, the image output
from the USB camera is connected to the input of the
contour detection filter.

This type of GUI makes it easy to partially modify and
add processes. For example, online experiments and of-
fline experiments can be easily realized in the same
environment by switching the source of image input im-
mediately to a camera or a video file, as shown in figure
3.

2.2� Extensibility
A program is described in small units called patches,

and Lavatube operates by interpreting these patches au-
tomatically. As figure 4 shows, work patches are created
by combining patches of functions such as data I/O, pa-
rameters, and by describing a processing procedure on
the object interface. Any user experienced in C++ pro-
gramming can easily create work patches of arbitrary
functions.

At present, Lavatube has functions for image captur-
ing from a USB camera, basic filtering, and arithmetic
operations. The high extensibility allows for easy addi-

tion of functions to use other types of cameras.

2.3� Storage and Reproduction of Working En-
vironment by XML

Lavatube can output a working environment including

a data flow and parameters to an XML file for storage.
The working environment can be completely reproduced
by loading the XML files. As the system becomes com-
plicated in ordinary programming, this processing
becomes time-consuming and often causes a program-
ming error. In Lavatube, each patch has a function that
can be realized easily by separating the description. This
function enables verification by reproducing the envi-
ronment, as well as later additions or modifications of
functions.

2.4� Parameter Setup via the GUI
Lavatube provides a GUI through which parameters

can be adjusted easily. Since dialog boxes, such as figure
5(a), are created dynamically, programmers are free to
use GUIs for additions or modifications without using a
GUI builder or other software. The dialog boxes are au-
tomatically generated by describing any parameter in
parameter function patches. Since parameter sets deter-
mined via the GUI are stored in an XML file, such as
figure 5(b), a description of constant parameters can be
separated from the source code to improve program
maintainability.

2.5� Visualization of Operation Status
The real-time display of image data on a data flow

allows the user to visually check the operation status
sequentially for efficient parameter tuning and other
tasks.

For real-time demonstration, Lavatube is designed to

Figure 4. Structure of “work patch”

Figure 2. Description of data flow

Figure 3. Switching online to offline environment.

 �������	
��	
�

������
����������
�

��	����
������	����
�

��������	
��	
�

(a) Dialog (b) XML output

Figure 5. Parameter setup

488

optimize the processing overhead and to operate the con-
structed system extremely quickly. The automatic
parallel processing of tasks in each work patch is opti-
mum for multi-core processors, which are becoming
more widespread. Figure 6 shows a parallel operation
example. In this figure, 25 tasks are operate on 8 core
PC.

3. Actual Cases

3.1 Wrapping external libraries
By wrapping OpenCV and other external libraries as

work patches, Lavatube can handle them easily. Figure 7
shows an example of detecting a human face by using the
Viola-Jones face detector [7]. The left-side image is a
work patch captured from a camera. According to the
flow from there to the lower stage, color-to-gray image
conversion and facial detection patches are connected.
Since the facial detection patch outputs the position
coordinates and dimensions of a face, it is connected to a
work patch that draws a circle at the face position. This
work patch is created to receive image and coordinate
inputs.

Figure 8 shows an example of optical flow estimation
by using the Lucas-Kanade method. Because optical flow
estimation requires current image and previous image, a
work-patch that buffers previous images is connected to
an optical flow patch.

3.2 Background / Foreground Segmentation
The background/foreground segmentation is a funda-

mental and important problem for vision systems, such as
video surveillance systems. The simplest method is sub-
tracting the current image from the background image.
However the simple method is susceptible to illumination
change such as shadows. Radial Reach Correlation (RRC)
[8] evaluates local textures and realizes robust back-
ground/foreground segmentation. Other approach uses
the pixel intensity distribution, such as Gaussian mixture
model, estimated from the past images. Tanaka et al.
proposed a fast estimation of the pixel intensity distribu-
tion using Parzen density estimation [9].

Implementation of background/foreground segmenta-
tion using simple method, the RRC and the Parzen

estimation on Lavatube is shown in figure 9. The simple
method procedure is created by connecting work patches
for gray image generation from color image, calculation
of absolute difference, and binarization. The RRC and the
Parzen estimation method is implemented respectively as
a work patch. RRC work patch inputs a gray-scale current
image and a gray-scale background image. Parzen esti-
mation work patch inputs color images.

Each method has some parameters that require adjust-
ing, such as threshold of binarization. Lavatube generate
dialog boxes automatically to adjust these parameters.
Multiple data flow with different parameter values can be
processed in parallel. In figure 7, each method operates by
two kinds of the parameter values. Each parameter values
can be adjusted in real-time by using the dialog boxes.
Therefore, optimum values can be verified instanta-
neously for various parameters that differ depending on
the environment.

 PETS20011 is used in figure 7. The data is outdoor
video sequence including moving people under signifi-
cant lighting variation. An outdoor vision application
needs to be robust against weather and sunlight changes.
The simple method cannot detect people because of the
illumination change. Because RRC uses not the pixel
intensity but the texture, the moving objects, such as
people and clouds, are detected. Because Parzen estima-
tion uses past image sequence to estimate the background
model, only moving people are detected.

In this way, users can compare two or more methods,
and confirm the parameter values and the processing
results at the same time to efficiently construct the vision
system.

4. Conclusion

This paper outlines Lavatube as a visual framework to
support trial programming and research for computer
vision or video or image processing by a GUI and XML,
and introduced some cases as examples. In the future, we

1 Available at ftp://pets.rdg.ac.uk/.

Figure 7. Face detection

Figure 8. Optical flow estimation

Figure 6. A parallel operation example

489

want to improve the user interface by integrating multiple
processing using a macro.

This software is released under GNU General Public
License (GPL). We hope the software will be of help to
researchers and educators in related fields.

References
[1] D. A. Forsyth and J. Ponce, Computer Vision: A Modern

Approach, Prentice Hall, 2003
[2] K. Konstantinides and J. R. Rasure, The Khoros Software

Development Environment for Image and Signal Processing,
IEEE Trans. on Image Processing, Volume 3, Issue 3,
pp.243–252, May 1994

[3] O. Milvang and T. Lonnestad. An Object Oriented Image
Display System, Proc. of 11th ICPR, pp. 218-221, October
1992

[4] Max/MSP, http://www.cycling74.com
[5] MATLAB/Simulink, http://www.mathworks.com
[6] AVS/Express, http://www.avs.com
[7] P. Viola and M. Jones. Rapid Object Detection Using a

Boosted Cascade of Simple Features, Proc. of CVPR2001,
vol.1, pp.511-518, December 2001

[8] Y. Satoh, H. Tanahashi, C. Wang, S. Kaneko, Y. Niwa and
K.Yamamoto, Robust Event Detection by Radial Reach Fil-
ter (RRF), Proc. of 16th ICPR, vol.2, pp.623-626, August
2002

[9] T. Tanaka, T. Shimada, A. Arita and D. Taniguchi, A Fast
Algorithm for Adaptive Background Model Construction
Using Parzen Density Estimation, Advanced Video and
Signal Based Surveillance 2007 (AVSS 2007), pp. 528-533,
September 2007

Figure 9. Implementation of background subtraction

490

