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Abstract

This paper presents a new hybrid approach to si-
multaneous detection and localization of multiple ob-
ject categories using both generative and discrimina-
tive models. Our approach consists of first learning
the generative model (pLSA) and discriminative model
(SVM) using bag of visual words and merging features,
respectively. Our merging feature combines spatial
shape and appearance of an object. At the same time
context graphs are generated from the labeled training
datasets. Then, given a new unlabeled test image, a
set of promising hypotheses are generated for each ob-
ject category using pLSA model and bag of visual words
representing each object. The discriminative part veri-
fies each hypothesis using SVM classifier with merging
features. In the post-processing stage, context infor-
mation along with the probabilistic output of the SVM
classifier is used to improve the overall performance of
the system. A combination of features and context in-
formation are used to investigate the accuracy of the
system. The performance of the proposed framework
is evaluated on the various standards (MIT-CSAIL,
UIUC, TUD etc.) and the authors’ own datasets. In
experiments we achieved superior results to some state
of the art methods over a number of standard datasets.

1 Introduction

In the last few years, object detection and localiza-
tion have become very popular areas of research in com-
puter vision. Although most of the categorization algo-
rithms tend to use local features, there is much more
variety on the classification methods. In some cases,
the generative models show significant robustness with
respect to partial occlusion and viewpoint changes and
can tolerate considerable intra-class variation of object
appearance[1, 2, 3]. However, if object classes share a
high visual similarity then the generative models tend
to produce a significant number of false positives. On
the other hand, the discriminative models permit us to
construct flexible decision boundaries, resulting in clas-
sification performance often superior to those obtained
by only generative models[4, 5]. However, they contain
no localization component and require accurate local-
ization in positions and scale. In the literature, the
standard solution to this problem is to perform an ex-
haustive search over all position and scales. However,
this exhaustive search imposes two main constraints.
One of them is the detector’s computational complex-
ity. It requires large computational time for relatively

large number of objects. The second is the detector’s
discriminance, since a large number of potential false
positives need to be excluded.

Our proposed method combines the advantages of
discriminative methods with those of probabilistic gen-
erative models. The method is based on finding one or
more probable locations of an object within an image
using a generative model, and then evaluating these
locations using a discriminative classifier. In the post-
processing stage, the environmental context informa-
tion is used to improve the overall performance of the
system. This paper has three main contributions. The
first is a new approach of integrating both generative
and discriminative classifiers into a single framework
to detect and localize multiple object categories per
image. The discriminative part, the SVM verification
stage, uses the merging feature of an object to verify
these promising hypotheses. The second contribution
is that the system automatically generates and uses the
context information and the category specific weighted
features to improve detection and localization perfor-
mance. The third contribution is the experimental re-
sults show the superiority of the new approach with
respect to some state of the art object categorization
methods in terms of detection performance and signif-
icant reduction of false positive rate.

It has been recently shown that combining the
power of generative modeling with a discriminative
classifier allows us to obtain good localization and
categorization[6, 7]. However, the proposed hybrid
approach in [6] was mainly used for scene classification
and did not provide any location information of the
object. On the other hand, in [7] the same feature is
used for both generative and discriminative classifiers
and is not sufficient enough to distinguish complex
object categories with multiple objects per image. Our
approach differs from these in using different features
and techniques for both generative and discrimina-
tive classifiers. In our previous research, we used a
combination of pLSA and discriminative classifier for
detection and localization of specific object. However,
our approach in this research differs from the previous
one with respect to the following: (i) our discrimina-
tive classifier uses more reliable shape and appearance
features to detect and localize large number of object
categories (ii) more efficient algorithm is designed and
implemented to generate promising hypotheses, and
finally (iii) we do experiments over some standard
datasets to compare the performance of our method
with some state of the art recognition frameworks.
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Figure 1: Hypotheses generation and SVM verification

2 Learning the Generative Model

To fit the pLSA model[8], we first seek vocabulary of
visual words for training images that will be insensitive
to change in viewpoint, scale, and illumination. This
vocabulary is formed by vector quantizing the SIFT
descriptors[9] using the K-means clustering algorithm.
The SIFT descriptors are computed on uniformly
sampled points in object edges over the circular patch
with radius r = 10. After constructing the visual
vocabulary, in the formulation of pLSA for images[1],
a co-occurrence table is computed where each image
is represented as a collection of visual words. The
pLSA model associates each observation of a visual
word, w within an image, d with a topic variable,
z ∈ Z{z1, z2, . . . , zk}. Here our goal is to determine
P (w|z) and P (z|d) by using the maximum likelihood
principle. The model is fitted for all training images
using the Expectation Maximization(EM) algorithm
[8] to a number of topics k. The pLSA model deter-
mines the mixture coefficients P (zk|dj) for each object
dj . An object dj is then classified as to maximum
P (zk|dj) over the number of topics, k. An object
category may belongs to multiple sub-topics and our
model automatically fits to an optimal number of
sub-topics.

3 Promising Hypotheses Generation

When a new test image is given, all visual words are
extracted from objects and background in the image
and each visual word is classified under the topic with
the highest topic specific probability P (wi|zk). Then it
is used to detect the region of interest (ROI) for each
object category in the image. The ROI is the small-
est rectangular region within the image that contains
all possible visual words for a particular object cate-
gory. For simplicity, among three detected ROIs, the
Fig. 1(a) shows one of the ROIs and its correspond-
ing possible visual words. Visual words are drawn in
small circles on the image. As shown in this figure,
ROIs are generally large because of existence of visual
words derived from other objects and background than

target objects due to visual polysemy. The following
algorithm can efficiently generates promising hypothe-
ses within those ROIs.

1. For all object categories repeat the following steps
with their corresponding rectangular ROI.

2. Compute the average aspect ratio, Mai
of the win-

dow for each object category i as Mai = Mwi/Mhi ,
where Mwi and Mhi are mean width and height of
the object i computed during the training stage.

3. For each object category, slide the window with
the average aspect ratio, Mai and count the num-
ber of visual words, Nvw =

∑
z∈ts

nvwiz , where
nvwiz

is the number of visual words for object cat-
egory i and sub-topics ts.

4. Determine the local maxima (Fig. 1(b)) based on
the average number of visual words at each column
position calculated as: Navg = 1

R

∑R
r=1 Nvw where

R is the number of rows for which sliding window
repeats within ROI.

5. For all local maxima regions within an image find
and suppress the windows, which overlap by 75%
or more with the window that contains the maxi-
mum number of visual words for each local region.

6. After suppressing the non-maximum windows in
each neighborhood the remaining windows are se-
lected as the promising hypotheses (Fig. 1(c)).

4 SVM Learning and Verification

In our approach, along with pLSA, a multi-class sup-
port vector machine (SVM) classifier is also learned in
parallel using shape and appearance features. To rep-
resent the shape of an object, spatial shape descrip-
tors are extracted from the object of interest. In order
to describe the spatial shape of an object we follow
the scheme proposed by Anna Bosch et al.[10]. Our
final shape descriptors represented by the normalized
Pyramid Histogram of Orientation Gradient(PHOG)
and computed within the range 0 to 360◦ into 40 his-
togram bins at resolution level l = 3. Although shape
representation is a good measure of object similarity
for some objects (e.g. coffee mug, CD), shape features
are not sufficient enough to distinguish among all types
of objects (e.g. keyboard, book). In this case, object
appearance represented by the bag of visual words is
a better feature to find the similarity between them.
The appearance patches and descriptors are computed
in a similar manner as described in section 2. Then the
normalized histogram of visual words for each object is
computed. Finally, the combination of both shape and
appearance features for an object O, are merged as:

H(O) = αHS(O) + βHA(O) (1)

where both α and β are weights for the shape his-
togram, HS(O) and appearance histogram, HA(O), re-
spectively. The multi-class SVM classifier is learned us-
ing the above merged feature giving the higher weight
to the more discriminative feature. The values of α
and β in equation 1 are determined for each object
separately. We use the LIBSVM[11] package for our
experiments in a multi-class mode with the rbf expo-
nential kernel.
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In the verification step, merging features are
extracted from regions of the image bounded by
windows of the promising hypotheses and fed into
the multi-class SVM classifier in recognition mode.
Only the hypotheses for which a positive confidence
measurement is returned are kept for each object.
Objects with the highest confidence level are detected
as the correct objects, (Fig. 1(d)). The confidence
level is measured using the probabilistic output of the
SVM classifier.

5 Post-Processing using Context

In the task of object category recognition, envi-
ronmental context information can play an important
role of reducing ambiguity in an object’s visual
appearance. To incorporate context in our system, we
first construct context matrices. These are symmetric,
non-negative matrices that contain co-occurrence
frequency among object labels in the training sets of
the database. Then fully connected context graphs are
constructed from these co-occurrence matrices. Thus,
a separate context graph is built for every environmen-
tal dataset in our experiment. During post-processing
stage, first the base context is determined by using the
output of the SVM classifier. For this purpose, both
number of detected objects and their probabilities are
used. A context graph that belongs to the maximum
number of detected objects is selected as a base
context. If the number of detected objects are equal
for multiple context graphs, then the context graph
that belongs to the maximum total probability of
the detected objects is selected. The base context
information is then used to give the flexible margin
for the context-related objects and hard margin for
non-contextual objects. It is mainly used to improve
the detected performance of the SVM classifier.

6 Experimental Results

In this section we carry out a set of experiments
to investigate the benefits of our integrated approach
with merging features and context information. Given
a completely unlabeled image of multiple object cate-
gories, our goal is to automatically detect and localize
objects in the image. In our experimental results, an
object is counted as a true positive object if the de-
tected object boundary overlaps by 50% or more with
the ground truth-bounding box for that object. Oth-
erwise, the detected object is counted as false positive.

Comparison with Other Methods. For compar-
ison purposes, most of the datasets are collected from
PASCAL VOC database collection. The performance
of our system is compared to the integrated representa-
tive and discriminative (IRD) representation of Fritz et
al.[7], the implicit shape model (ISM) of Leibe et al.[3]
and local kernels (LK) representation of Wallraven et
al.[12], using the same datasets that are tested in[7].
For each dataset we use the SVM classifier with PHOG
feature to verify the hypotheses generated by our al-
gorithm as discussed in section 3. Table 1 summarizes
the performance of our experiment with other methods.
The test is performed on images of each category versus
200 Caltech-101 and Caltech-256 background images.

Table 1: Performance comparison with other methods
Category and Dataset LK[12] ISM[3] IRD[7] Authors
Horse (Weizmann) 77.8% 88.5% 88.5% 97.0%
Cow (TUD) 95.3% 96.1% 97.1% 98.6%
Motorbike (CalTech) 87.6% 93.8% 96.5% 98.3%
Car (UIUC) 61.0% 94.7% 99.4% 97.1%
Car (TUD) − − − 98.3%

Table 2: Hypotheses generation and verification results
Category Detected objects Unde-

tected
object

SVM
results

w1 w2 w3 w4 w5 w6 w7

Coffee jar 65 28 8 3 − − − 2 90
Coffee mug 9 11 18 11 16 11 9 26 76
Spoon 62 23 3 − − − − 2 90
Hand-soap 20 23 19 14 12 12 9 2 89
Avg. (%) 37 20 11 7 7 6 4 8 80

Each image in these datasets contains only one target
object. Although the recognition task is different from
our multiple object detection and localization, we per-
formed this experiments to compare basic performance
of our method with others.

Benefits of the Integrated Method. One of the
main contributions of this paper is to integrate both
generative and discriminative approaches into a consis-
tent framework. In this section we will investigate the
benefits of our SVM verification stage instead of using
only pLSA for detection and localization purpose. As
we previously mentioned, the generative model alone
is not sufficient enough to detect multiple objects in
an image. This is due to visual polysemy. In this
experiments, we use our own dataset containing four
object categories: coffee jar, coffee mug, spoon, and
hand soap. The training and testing datasets con-
sist of 111 images of 160 objects and 130 images of
420 objects, respectively. Table 2 shows the detected
objects by our hypotheses generation method, where
wi, i = 1 . . . 7, indicates the correctly detected hypoth-
esis window. Using only pLSA, if we take the maximum
number of visual words that belong to w1 window for
classification purposes then only 37% objects are de-
tected. Similarly, the window containing a second max-
imum number of visual words (w2) detects only 20% of
the total numbers of objects, and so on. However, from
Table 2 it is clear that all of the generated hypotheses
are able to detect 92% objects. Using the SVM veri-
fication stage on the generated hypotheses our system
detects 80% of total objects as shown in the last col-
umn of Table 2. In this section, we also investigate
how our method performs on MIT-CSAIL static of-
fice datasets for three categories of objects: computer
monitors, computer keyboards and bookshelves. Our
final result is comparable with Sivic et al.[1] for some
categories of objects. In their approach, 15 out of 20
computer screen (75%) and 17 out of 20 bookshelves
(85%) are are correctly detected. However, in our ap-
proach the detection and localization accuracy for com-
puter screen and bookshelf are 84% and 93%, respec-
tively. We obtained recognition accuracy of 77% for
computer keyboard. Our better performance compared
to[1] could be due to the integration of both generative
and discriminative classifiers instead of using only gen-
erative model.
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Table 3: Experimental results on authors’ datasets
Category Merging

feature
(MF)

MF
with
context

Weighted
MF
(WMF)

WMF
with
context

DLR FPR DLR FPR DLR FPR DLR FPR
Coffee jar 0.81 0.12 0.81 0.09 0.80 0.22 0.81 0.13
Coffee mug 0.30 0.09 0.31 0.05 0.58 0.74 0.73 0.40
Spoon 0.76 0.08 0.80 0.19 0.75 0.11 0.78 0.08
Hand soap 0.55 0.12 0.55 0.11 0.70 0.56 0.74 0.28
Cup noodle 0.81 0.75 0.83 0.48 0.79 1.11 0.84 0.54
Monitor 0.80 0.08 0.81 0.05 0.86 0.25 0.88 0.03
Keyboard 0.90 0.11 0.90 0.07 0.97 0.21 0.97 0.05
Mouse 0.60 0.91 0.60 0.95 0.60 1.44 0.63 0.67
CD 0.46 0.83 0.47 0.26 0.58 1.31 0.58 0.50
Book 0.63 1.80 0.68 0.91 0.64 1.91 0.68 0.76
Avg. Rate 0.66 0.37 0.68 0.24 0.73 0.68 0.77 0.30

Computer−monitor

Computer−keyboard

Computer

mouseCD

Book

Computer−monitor

Computer−keyboard

Bookshelf Computer−monitor

Computer−keyboard
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Figure 2: Example detection and localization results:
(a) authors’ datasets (b) MIT-CSAIL datasets

Results− Authors’ Dataset. In a series of ex-
perimental evaluations, we finally evaluate the perfor-
mance of the system in our own dataset. In most of
the studies[1, 7, 3], a small number of categories (two
to five) were used for categorization purposes. Thus,
we collected the dataset consisting of ten categories
of objects in different environments and backgrounds.
There are a total of 774 images containing 2002 objects.
Among them 293 images (with 582 objects) are used
for training purposes and the rest of the 481 images
(with 1420 objects) are used for testing. Table 3 shows
the detection and localization rate (DLR) at the false
positive rate (FPR) indicated in their adjacent column.
The merging feature without any weight and context
information produces an average DLR 66%. However,
when the same feature is used with context information
as a post-processing stage, the system incrementally
increases the average DLR to 68% with a reduction of
the false positive rate from 37% to 24%. Since some
objects are best described by their shape feature (e.g.
coffee mug, CD) and others by their appearance (e.g.
computer keyboard, book), the weighted merging fea-
ture gives us the best performance (77%) for all ten
object categories. Although the context information
incrementally increases the detection and localization
performance, it significantly decreases the false posi-
tive rate. Some detection and localization results on
our own and MIT-CSAIL datasets are shown in Fig. 2.

7 Conclusion

In this research, our system has shown the ability
to accurately detect and localize many objects even
in the presence of a cluttered background, substantial
occlusion, and significant scale changes. Our experi-
mental results demonstrated that the hypotheses gen-
eration algorithm is able to generate nearly accurate
hypotheses for all object categories. The SVM verifi-
cation stage, on the other hand, uses the merging fea-
ture and category specific weighted merging feature to
enrich the performance of the system. Finally, the en-
vironmental context information in the post-processing
stage compensates for ambiguity in an object’s visual
appearance. In the future, we will explore the pos-
sibility of detecting pose based on the window of the
detected object by SVM classifier and its surrounding
visual words. We also plan to use the environmental
context information in more meaningful ways to detect
and localize missing objects within an image depending
on the base context environment.
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