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Abstract

Given data points p0, . . . , pN on a Riemannian
manifold M and time instants 0 = t0 < t1 < . . . <
tN = 1, we consider the problem of finding the curve
γ on M that best approximates the data points at the
given instants. In this work, γ is expressed as the curve
that minimizes the weighted sum of a least-squares term
penalizing the lack of fitting to the data points and a
regularity term defined as the mean squared velocity
of the curve. The optimization task is carried out by
means of a steepest-descent algorithm on the set of con-
tinuous paths on M. The steepest-descent direction,
defined in the sense of the Palais metric, is shown to
admit a simple formula based on parallel translation.

1 Introduction

1.1 Motivation

Let p0, p1, . . . , pN be a finite set of points in R
n,

or more generally on a Riemannian manifold M, and
let 0 = t0 < t1 < ... < tN = 1 be different instants
of time. The problem of fitting a curve γ in M to
the given points at the given times involves two goals
of conflicting nature. The first goal is that the curve
should fit the data as well as possible, e.g., in the sense
of the functional Ed defined by:

Ed(γ) =
N∑

i=0

d2(γ(ti), pi),

where d denotes the geodesic distance function on the
Riemannian manifold M. (In the case where M is the
Euclidean space R

n endowed with its canonical metric,
Ed(γ) is simply

∑N
i=0 ‖γ(ti)− pi‖2, where ‖ · ‖ denotes

the Euclidean norm). The second goal is that the curve
should be sufficiently “regular”, in certain sense, e.g.,
the length of the curve should be as small as possible,
or the changes in velocity should be minimized.

Curve fitting problems on manifolds appear in vari-
ous applications. To cite but one example, let (Ii)i≤N

be a temporal sequence of images of a 2D or 3D object
motion, in which the object can appear and disappear
at arbitrary times due to obscuration and other rea-
sons. The task is to estimate the missing data and
recover the motion of the object as well as possible [6].
It is clear that focussing on the first goal (fitting the
data) without concern for the second goal (regularity
of the curve) would yield poor motion recovery, and
that result is likely to be improved if inherent regu-
larity properties of the object motion are taken into
account [5].

1.2 Previous work

One extreme way of handling the two conflicting
goals to the curve fitting problem is to impose a regu-
larity constraint and minimize the criteria Ed. When
M = R

n, a classical regularity constraint consists of
restricting the curve γ to the family Pm of polyno-
mial functions of degree not exceeding m, (m ≤ N).
This least-square problem, introduced by Lagrange
(1736− 1813), cannot be straightforwardly generalized
to an arbitrary Riemannian manifold M because the
notion of polynomial does not carry to M in an obvi-
ous way. An exception is the case m = 1; the poly-
nomial functions in R

n are then straight lines, whose
natural generalization on Riemannian manifolds are
geodesics [6]. The problem of fitting geodesics to data
on Riemannian manifold M was considered by several
authors ([13], [11],[4]) for the case where M is the spe-
cial orthogonal group SO(n) or the unit sphere S

n.
The other extreme approach to the curve fitting

problem is to seek γ that optimizes a regularity crite-
rion Es under the interpolation constraint Ed(γ) = 0.
For example, when M = R

n, minimizing the functional
Es defined by

Es(γ) :=
∫ 1

0

‖γ̇(t)‖2
dt (1)

yields an optimal curve γ composed of line segments
between the data points p0, . . . , pN . Another example
is the criterion

Es(γ) :=
∫ 1

0

‖γ̈(t)‖2dt, (2)

which yields solutions known as cubic splines. This
concept has been investigated by several authors when
M is a nonlinear manifold, motivated by different
types of application. Crouch et al. [3] implemented
the de Casteljau algorithm on Lie groups and on m-
dimensional spheres under some boundary conditions.
More recently, Jakubiak et al. [5] presented a geomet-
ric algorithm to generate splines of an arbitrary degree
of smoothness in Euclidean spaces and then extended
it to matrix Lie groups. They applied their algorithm
to design a smooth motion of a 3D object in space.
Using an unrolling and unwarpping procedure in Rie-
mannian manifolds, Kume et al. [10] developed a new
method to fit smooth curves through a series of shape
of landmarks.

1.3 Our approach

In this paper, we choose a middle way to the two
extreme approaches mentioned above. In the spirit of

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN13-10

422



the work of Machado and Leite [13], we consider the
problem of minimizing a functional of the form:

E : Γ → R

γ �→ E(γ) := Ed(γ) + λEs(γ)

where Γ is the set H1([0, 1],M) of all the continuous
paths γ : [0, 1] → M whose weak first derivative is
locally square integrable in every chart of M, i.e.,

Γ = {γ : [0, 1] → M | γ ∈ C0,

∫ 1

0

‖ ˙γ(t)‖2
dt < ∞},

(3)
and where λ is a positive real constant, termed regu-
larity parameter. The parameter λ makes it possible to
mitigate between the two conflicting goals mentioned
above. When λ is large, the emphasis is laid on the reg-
ularity condition and less so on the fitting condition,
whereas when λ is small, the fitting condition domi-
nates. Observe that there is no constraint on γ further
than belonging to Γ.

In [13], the regularity cost function Es is chosen as

∫ 1

0

〈
D2γ

dt2
,
D2γ

dt2

〉
γ(t)

dt, (4)

where 〈·, ·〉x denotes the Riemannian metric at x ∈ M
and D2γ

dt2 denotes the covariant derivative of the velocity
vector field, γ̇, along γ. This is a natural generalization
of (2) to manifolds endowed with an affine connection.
The choice of (2) is motivated by the fact that cubic
splines in R

n can be viewed as extrema of (2) under the
interpolation condition [13, Prop 4.6]. The main result
in [13] is to give a necessary condition of optimality for
γ to be a minimizer of Ed + λEs. The necessary con-
dition takes the form of a fourth-order ordinary differ-
ential equation for γ involving the covariant derivative
and the curvature tensor.

The present paper differs from [13] in two ways.
First, instead of (4), we focus on the regularity cost
function Es defined as (1), which penalizes the aver-
age squared velocity of the curve. In summary, the
function to be minimized is

E : Γ → R : γ �→ E(γ) = Ed(γ) + λEs(γ)

=
N∑

i=0

d2(γ(ti), pi) + λ

∫ 1

0

〈γ̇(t), γ̇(t)〉γ(t) dt. (5)

Other forms of Es, such as (2) will be considered in
later work. The second difference is that we propose
an explicit numerical algorithm for computing the min-
imizer of Ed+λEs. The procedure is a steepest-descent
iteration on the search space Γ. The chosen descent di-
rection is steepest in the sense of the Palais metric [12],
a Riemannian metric introduced recently to define gra-
dient flows of various geometric minimal paths ener-
gies [9]. A major advantage of using the Palais metric
in this context is that the gradient of E (whose negative
provides the steepest-descent direction) admits a sim-
ple expression involving the parallel translation on the
manifold M. The step size of the steepest-descent it-
eration is selected using an Armijo backtracking proce-
dure, but any other efficient step size selection method
would have been suitable.

The paper is organized as follows. In section 1 we
formulated the problem of fitting curves as an opti-
mization problem for the functional E. Section 2 sum-
marizes some definitions and properties, from differen-
tial geometry. In section 3 we compute the gradient of
E with respect to the Palais metric, and in section 4 we
formulate a gradient descent method to minimize the
functional E. Some examples are performed in section
5, for M = R

2 and M = S
2, to assess the efficiency

of our method. Conclusions and future work are pre-
sented in section 6.

2 Definitions

In this section, we recall some concepts of Rieman-
nian geometry that we require for our analysis. For
more details, we refer, e.g., to [12]. In what follows,
M denotes a Riemannian manifold endowed with its
Riemannian structure, Γ as defined in (3), and γ an
element of Γ.

Definition 1 (Tangent space) The tangent space of
Γ at γ is given by

Tγ(Γ) = {α ∈ H1([0, 1], TM) | α(t) ∈ Tγ(t)(M), ∀t ∈ [0, 1]}.

Definition 2 (Covariant derivative) Let
w ∈ Tγ(M) be a vector field along γ. The co-
variant derivative of w (induced by the Riemannian
connection) is a vector field denoted Dw

dt , and obtained
by projecting dw

dt (t) onto the tangent space Tγ(t)(M).

Definition 3 (Covariant integral) A vector field
w ∈ Tγ(M) is called a covariant integral of v along
γ if the covariant derivative of v is w, i.e. Dw

dt = v.

Definition 4 (Covariantly constant) A vector
field w is covariantly constant or parallel along the
curve γ if and only if Dw

dt (t) = 0 for all t.

Definition 5 (Parallel transport) A vector field ṽ
is called the parallel transport of a vector field v ∈
Tγ(0)(M), along γ if and only if ṽ(0) = v and Dṽ

dt = 0,
for all t ∈ [0, 1].

Definition 6 (Critical point) Let E : Γ → R be a
real valued function on Γ. A point γ ∈ Γ is a criti-
cal point of E if the gradient of E vanishes at γ, i.e.
∇E(γ) = 0.

Observe that the definition of the (non-degenerate)
Riemannian metric does not affect the critical points:
if ∇E vanishes at γ in one Riemannian metric, then it
does so in all Riemannian metrics. However, the basins
of attraction of the local minima for a given steepest-
decent algorithm will in general depend on the Rie-
mannian metric.

3 Gradient with respect to the Palais
metric

For the gradient of E (and thus the steepest-descent
direction of E) to be well-defined, a Riemannian struc-
ture (i.e., a Riemannian metric) is needed on Γ. There
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is some freedom in this choice. Here we will use the
Palais metric [12] defined as follows:

〈〈v, w〉〉γ = 〈v(0), w(0)〉γ(0)+
∫ 1

0

〈
Dv(t)

dt
,
Dw(t)

dt

〉
γ(t)

dt,

with v(t), w(t) ∈ Tγ(t)(M). This turns Γ into a Hilbert
Riemannian manifold, and the Riesz representation
theorem ensures that gradients of differentiable real-
valued functions on Γ are well defined (see [7, §6.11]).
In this section, we show that the gradient of E (5) with
respect to the Palais metric admits a simple expression
involving the parallel transport on M.

3.1 Derivation of data term

We first obtain an expression for the gradient of
the ith term in Ed, namely, γ �→ d2(γ(ti), pi). Let
vi be the smallest tangent vector at γ(ti) such that
expγ(ti)(vi) = pi, where exp denotes the Riemannian
exponential as defined in [2]. We assume that vi exists
and is unique. (Note that this is the case for almost
all pairs (γ(ti), pi) on R

n, the unit sphere, the special
orthogonal group, the Grassmann manifold of p-planes
in R

n, and the Stiefel manifold of orthogonal p-frames
in R

n (p < n).) Then the directional derivative of
the function γ �→ d2(γ(ti), pi), in the direction of any
w ∈ Tγ(Γ), is 2 〈w(ti), vi〉; see, e.g., [8]. The gradient
of γ �→ d2(γ(ti), pi) at γ is thus the element α of TγΓ
such that 〈〈α, w〉〉γ = 2 〈w(ti), vi〉 for all w ∈ Tγ(Γ).
The next theorem gives an expression for α.

Theorem 1 The gradient of the function Γ → R :
γ �→ d2(γ(ti), pi) evaluated at γ ∈ Γ is represented by
the following vector field along γ:

αi(t) =
{

2tṽi(t) + 2ṽi(t), 0 ≤ t ≤ ti
2tiṽi(t) + 2ṽi(t), ti ≤ t ≤ 1 ,

where vi = exp−1
γ(ti)

(pi) ∈ Tγ(ti)Γ and ṽi is the parallel
translation of vi along γ.

The proof is removed due to space limitation.

Observe that ṽi(ti) = vi, αi is covariantly linear
from 0 to ti, and is covariantly constant from ti to
1. In other words, the covariant derivative of αi is
covariantly constant (ṽi) until ti, after that it is 0.

Finally, the gradient of the full data term Ed, under
the Palais metric, is α =

∑N
i=1 αi.

3.2 Derivation of length term

As shown in [9] the gradient of the functional
Es(γ) =

∫ 1

0
‖γ̇(t)‖2dt, with respect to the Palais met-

ric, is simply the covariant integral of the velocity vec-
tor γ̇, vanishing at t = 0.

Theorem 2 The vector field β along γ that provides
the gradient of the function Γ → R : γ �→ Es(γ) =∫ 1

0
〈γ̇(t), γ̇(t)〉γ(t) dt is given by the following equation:

Dβ(t)
dt

= γ̇(t), β(0) = 0

In case M = R
n, the gradient vector field is simply

β(t) = γ(t) − γ(0).

4 Energy Minimization

In this section, we describe a steepest-descent algo-
rithm for minimizing the energy function E (5). The
algorithm is described conceptually in the space Γ of
continuous curves on M.

4.1 Conceptual algorithm in Γ

The algorithm creates a sequence (γk)k=0,1,... ⊂ Γ
as follows. The initialization step consists of choosing
an arbitrary curve in Γ to be the starting curve noted
γ0. Then, given the current iterate γk, we compute the
gradient ∇E(γk) and select γk+1 according to

γk+1 = γk − ρ̂k∇E(γk),

where ρ̂k is a step size chosen using some step size
selection rule (see, e.g., [1]).

A formal specification of our gradient descent algo-
rithm is given in algorithm 1.

Algorithm 1 : Gradient descent

Require: a scalar ε ∈]0, 1[.
Input: initial iterate γ0, an arbitrary curve in Γ.
Output: an optimal curve γ̂.
1: k = 0.
2: Repeat until ‖∇E(γk)‖ ≤ ε
3: k = k + 1.
4: Compute E(γk) and ∇E(γk).
5: Find the step size ρ̂k.
6: Set γk = γk−1 − ρ̂k∇E(γk−1) .
7: End repeat.
8: γ̂ = γk.

5 Experimental evaluation

In this section we will show some illustrations of
our gradient descent method on the Euclidean plane
M = R

2 and on the sphere M = S
2.

In what follows, and in both cases (M = R
2 and

M = S
2), we first generate N + 1 control data points

p0, p1, . . . , pN randomly on the given manifold M at
different instants of time 0 = t0 < t1 < t2 < . . . tn ≤
tN = 1. Then, we initialize our algorithm with any
arbitrary continuous curve γ0 ∈ Γ, and finally apply
our gradient descent method to search for the optimal
curve γ̂ that minimizes E.

5.1 Case 1: M = R
2

Shown in figure 1 (left panel) are some examples of
our approach applied to different starting sets of points
generated randomly on M = R

2 using different values
of λ. If λ is very small, we have E  Ed, and the
solution is the linear piecewise curve passing through
the given points. If λ is very large, then E  Es and
the curve will shrink to one point in R

2, namely, the
center of mass of the given points p0, p1, . . . , pN . Note
that the problem on the top left in figure 1 has a sim-
ple closed-form solution. We checked that our solution
corresponds exactly to this closed-form.
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5.2 Case 2: M = S
2

Here we show some results on a non-linear manifold,
the sphere M = S

2. It is well known that geodesics on
S

2 are shorter arcs connecting two points. Shown in fig-
ure 1 (right panel) are some examples of our approach
applied to different sets of data points generated ran-
domly on M = S

2. Curves in different colors are ob-
tained with different values of λ. If λ is very small, we
have E  Ed, and the solution is the geodesic piece-
wise curve passing through the given points. If λ is
very large, E  Es and the curve will shrink to one
point in S

2, precisely the Karcher mean of the given
set of points p0, p1, . . . , pN .

6 Summary

We have addressed the problem of fitting a curve to
data points on a Riemannian manifold M by means
of a Palais-based steepest-descent algorithm applied to
weighted sum of fitting-related and a regularity-related
cost function. As a proof of concept, we have used the
simple regularity cost function (1), for which the opti-
mal curves are piecewise geodesics. In future work, we
will use cost function (4), which is related to curvature.
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Figure 1: The minimum of E in M = R
2 in the left side

and M = S
2 in the right, reached by the gradient descent

method with respect to Palais metric using different values
of λ.
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