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Abstract

In this paper, we present a graph cut-based mo-
tion segmentation method that takes occlusion into ac-
count. We formulate the motion segmentation problem
in terms of energy minimization with accounting for
occlusion and minimize the energy function with the
divisive graph cut algorithm where multiway minimum
cuts for motion segmentation are efficiently computed
through the swap move and split move of binary la-
bels. A graph cut-based motion estimation technique is
employed to estimate the motion field and occlusion be-
tween consecutive frames of the motion image sequence.
Based on the motion estimate, our method segments a
current frame into a number of regions of similar mo-
tion by assigning a label to each pixel. The label as-
signment of occluded pixels, of which the motion is not
defined, is determined based on a color prior. The ef-
fectiveness of our method was verified with experimen-
tal results for various real motion image sequences.

1 Introduction

The aim of this work is to investigate an optimal mo-
tion segmentation method for motion image sequences
with occlusion, of which an example is shown in Fig. 1.
Although the motion estimation and segmentation has
been extensively studied, the motion estimation as well
as the motion segmentation still remains a challenging
problem because occlusion occurs commonly in real im-
age sequences. Graph cut methods [1, 2] showed very
promising motion estimation performance, with ap-
proximately 4 times fewer errors than standard meth-
ods such as normalized correlation. Besides, graph cut
methods have important advantages which other ones
do not have. For example, the graph cut method pro-
posed by Kolmogorov and Zabih [3], referred by the KZ
method in this work, can addresses occlusions prop-
erly, while preserving other advantages of graph cuts,
such as optimality. However, the motion segmentation
based on such motion estimate is still error-prone due
to the motion estimation error around occluded areas
as illustrated in Fig. 1 where we can see that occlu-
sion occurs around motion boundary and the motion
of occluded pixels is not defined.

The motion segmentation problem of this work is
formulated in terms of energy minimization, which re-
sults in a new motion segmentation energy function
based on the motion field and occlusion between two
consecutive frames of an input motion image sequence.
The KZ method is employed to estimate the motion
field and occlusion. An additional variable is intro-
duced to account for the occlusion in our formulation.
Then, we efficiently minimize the energy function with

Figure 1: A motion image sequence and its motion field
and occlusion estimation result with the KZ method
[3]. Red-colored areas denote occlusion.

divisive graph cuts (DGC), which has been introduced
in [4] to compute multi-way minimum cuts through the
swap move and split move without user-defined seeds
contrary to other graph cut methods [5, 6, 7]. Us-
ing the DGC algorithm, we optimally assign a label to
each pixel according to the motion estimate to segment
a current frame into a number of regions of similar mo-
tion. A color prior is used to solve the label assignment
of occluded pixels by enforcing the label of each pixel
likely to be the same with neighboring pixels of similar
color.

The main advantage of our method is that it can
find an optimal motion segmentation for a motion im-
age sequence from its inaccurate motion estimate with
occlusions. In the previous segmentation methods, the
segmentation of motion is tackled by applying K-means
clustering [8], Maximum-Likelihood framework [9], or
Normalized cuts [10]. However, those methods belong
to a sub-optimal solution from a computational point of
view. Besides, they cannot handle occlusions properly
contrary to ours. In addition, our method is different
from layer-based motion segmentation methods using
graph cuts [11, 12], where a motion image sequence
is represented with a number of layers of specific mo-
tion, such as affine motion or projective one. On the
contrary, our method does not depend on such image
motion model. The effectiveness of our method was
verified with experimental results for various real mo-
tion image sequences.

This paper is organized as follows. Section 2 ex-
plains the formulation and algorithm of our method in
details. In Section 3, we give experimental results of
our method for real image sequences. Our concluding
remarks are presented in Section 4.
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Figure 2: An illustration of the data term with the
motion vector, zM

p , and the occlusion variable, op, for
a pixel, p, on a current frame of Woman sequence.

2 Proposed Method

2.1 Motion Segmentation Energy

Let us denote I and J two consecutive frames from
a motion image sequence. The motion field between
I and J is denoted by zM ≡ {zM

p }|P|
p=1, where zM

p is
the motion vector at some pixel p in I and P is the
set of pixels in I. The motion vector is defined as
zM

p ≡ (dp,h, dp,v)�, where dp,h and dp,v are the hori-
zontal and vertical disparity values. In this work, the
motion vector zM is estimated with the KZ method [3].
Then, an additional variable o ≡ {op}|P|

p=1 is introduced
to denote the occlusion or non-occlusion for each pixel
p as

op =
{

0 if p ∈ O
1 otherwise , (1)

where O is the set of occluded pixels. Note that the
motion vector zM

p is not defined at occluded pixels as
shown in Fig. 2. Therefore, it is a challenge to assign a
motion segmentation label to those pixels. To solve this
problem, the RGB color of the current frame, denoted
by zC, is used in a prior term of the energy.

Let A be a configuration (or labeling) corresponding
to the motion segmentation. In our method, the energy
function for motion segmentation, E, has the form

E (A,Θ) = λ · D (A, Θ) + K (A) , (2)

where the data term D measures how the motion of
each pixel confirms to the parametric mixture of mo-
tion data and the prior term K imposes a penalty if
neighboring pixels of similar color have different seg-
mentation labels and the parameter λ > 0 controls the
balance between the two terms. We assume that the
motion data zM are generated from a finite mixture
density model G

(
zM|Θ)

=
∑L

l=1 gl

(
zM|θl

)
with un-

known L components, where Θ ≡ {θl}L
l=1 is a set of

model parameters and L is the unknown number of
components of the mixture model. By integrating the
occlusion variable o, the data term is defined by

D (A, Θ) =
∑
p∈P

op · Dp (Ap,Θ) , (3)

which explicitly reflects that the data term should be
zero if op = 0, i.e., the motion data should not produce
an effect on the label assignment of occluded pixels.
The value of the individual term Dp is defined by

Dp (Ap = l, Θ) =
{

1
2r2

p,l if |rp,l| ≤ ζl

ζl ·
(|rp,l| − 1

2ζl

)
otherwise

(4)
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Figure 3: An illustration of prior penalties in a 16-
neighborhood system. The strength of penalty is re-
flected by the thickness of line.

where rp,l is the residual term

r2
p,l =

1
2

(
zM

p − ml

)�
S−1

l

(
zM

p − ml

)
. (5)

with the mean vector ml and covariance matrix Sl

of the motion vector zM
p . The tuning parameter ζl

is robustly computed by ζl=τ · median {|rp,l|}, with
τ=1.4826 typically, where the value of τ is chosen to
make the robust estimate of ζl to be consistent with
the standard deviation of normal density.

The prior term is defined by

K (A) =
∑

{p,q}∈N
Kp,q · δ (Ap �= Aq) , (6)

where

δ (Ap �= Aq) =
{

1 if Ap �= Aq

0 if Ap = Aq
, (7)

represents the Potts interaction model to encourage the
labeling A to be piecewise constant and N denotes a set
of all pairs of pixels neighboring in some neighborhood
system such as the 16-neighborhood in Fig. 3. For
each neighboring pixel pair (p, q) in N , the term Kp,q

is defined by

Kp,q =
(

κ · exp
(
−1

2
d2
H

(
zC

p , zC
q

))
+ 1 − κ

)
· η

d (p, q)
,

(8)
with the parameter κ ∈ [0, 1] to determine the influence
of the exponential function of dH

(
zC

p , zC
q

)
, the distance

between two color feature vectors zC
p and zC

q , normal-
ized with the covariance matrix, H, of the quantities
zC

p −zC
q for all pairs of p and q in N . The second term

η
d(p,q) is a weighting function approximating the length
of curves on a regular grid of image, where the param-
eter η > 0 is a constant related to the structure of the
given neighborhood system N on the grid of image and
the function d (p, q) is the distance between p and q. In
this work, the value of η is set with η = δ2 · π/ι, where
δ is the cell size, typically set to one, and ι is the size
of neighborhood, e.g., ι = 16 for the 16-neighborhood
system in Fig. 3.

Figure 4: An example of the split move (the 2nd image)
and swap move (the 3rd image) of DGC in our motion
segmentation algorithm.
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Figure 5: Results of the motion estimation of the KZ
method and the motion segmentation of our method
for Woman sequence.

2.2 Motion Segmentation Algorithm

The motion segmentation A can be computed as
a global minimum of the motion segmentation en-
ergy E (A,Θ) by solving a multiway cut problem in
a weighted graph with multiple terminals. However,
solving a multiway cut problem is known to be NP-
hard [13]. In addition, the estimation of A and Θ can-
not be initiated without some prior knowledge such as
seed points or contours [5, 6]. We overcome these diffi-
culties by applying the DGC algorithm [4] which solves
the multiway cut problem through the swap move of bi-
nary labels in a top-down way and integrates the split
move into the swap move to initiate A and Θ with-
out user interaction. The swap move and split move
of DGC is recursively applied to a current region to
obtain new subregions until the number of motion seg-
ments reaches to a pre-defined value or some stopping
conditions are met. Fig. 4 illustrates the split move
and swap move of DGC in our motion segmentation.

3 Experimental Results

The effectiveness of our graph cut-based motion seg-
mentation method was empirically verified with four
kinds of real motion image sequences of 240 × 160
pixels, Woman, Man, Car-People and Cars sequences
obtained from the UCLA CIVS Lab (http://civs.
stat.ucla.edu). The graph cut library [2] was used
for algorithm implementation, and a regular grid-
fashioned, weighted graph with the 16-neighborhood
system was constructed. For explanation, the motion
segmentation result of our method for each motion im-
age sequence was presented with two input frames and
the motion and occlusion estimation result between the
frames. The value of the balancing parameter λ in our
method was empirically selected to produce a good seg-
mentation result for each motion image sequence.

Figure 6: Results of the motion estimation of the KZ
method and the motion segmentation of our method
for Man sequence.

Figure 5 shows the motion segmentation result of
our method on Woman sequence with the motion es-
timation result of the KZ method. As shown in that
figure, the input frame has two dominant motions, i.e.,
one motion corresponds to the woman and the other
corresponds to the background scene. However, the
motion estimation result shows that there are many lo-
cal motions and occluded pixels. Note that the region
of woman has at least four kinds of different local mo-
tions and many occluded pixels at the left side. How-
ever, our method obtained the motion segmentation
boundary with a high accuracy. Note that our method
could determine the label assignment of occluded pix-
els without ambiguity. In addition, the number of seg-
ments was determined without user interaction. In Fig.
6, we also see that there are also two dominant motions
and a variety of local motions, especially at the back-
ground region, between the two input frames. Nev-
ertheless, our motion segmentation method found two
dominant motions successfully as shown in that figure.
In addition, occluded pixels were properly labeled and
the segmentation boundaries were accurately localized.

In Figures 7 and 8, our motion segmentation method
was applied to Car-People and Cars sequences, of
which each input frame has three dominant motions.
As shown in those figures, our motion segmentation
method successfully found three dominant motions,
while the KZ method gave highly inaccurate motion
estimation results for those sequences. As shown in
those figures, it was more difficult to obtain accurate
segmentation boundaries since the colors of objects in
those sequences were very similar to each other. For
example, the motion segmentation boundaries in Fig.
7 were not so smooth as true ones, and the segmenta-
tion of the larger car in Fig. 8 was leaked to the area
of the road due to the ambiguity of color.
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Figure 7: Results of the motion estimation of the KZ
method and the motion segmentation of our method
for CarPeople sequence.

4 Conclusions

A new divisive graph cut-based motion segmenta-
tion method was presented in order to find an optimal
motion segmentation of a motion image sequence with
occlusion. The motion segmentation problem was for-
mulated with a motion segmentation energy function
based on the motion field and occlusion estimate and
solved using the divisive graph cut algorithm, which
made it possible to compute multiway minimum cuts
for optimal motion segmentation without user interac-
tion contrary to other graph cut methods. In this way,
our method successfully segmented a current frame into
a number of regions of similar motion although the mo-
tion field and occlusion estimate was inaccurate. The
experimental results of motion segmentation for real
motion image sequences showed the effectiveness and
performance of our method.

Acknowledgements

This work was supported by the IT R&D joint pro-
gram of Ministry of Knowledge Economy / Institute for
Information Technology Advancement and Ministry of
Culture, Sports and Tourism / Korea Culture & Con-
tent Agency, [2007-S-051-01, Software development of
the Digital Creature].

References

[1] R. Szeliski and R. Zabih: “An Experimental Compar-
ison of Stereo Algorithms,” In Proceedings of Interna-
tional Workshop on Vision Algorithms: Theory and
Practice, pp. 1-19, 1999.

[2] Y. Boykov, O. Veksler, and R. Zabih: “Fast Approx-
imate Energy Minimization via Graph Cuts,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence 23(11), 1222-1239, 2001.

Figure 8: Results of the motion estimation of the KZ
method and the motion segmentation of our method
for Cars sequence.

[3] V. Kolmogorov and R. Zabih: “Computing Visual Cor-
respondence with Occlusions using Graph Cuts,” In
Proceedings of IEEE International Conference on Com-
puter Vision, pp. 508-515, 2001.

[4] Jong-Sung Kim and Ki-Sang Hong: “A New Graph
Cut-based Multiple Active Contour Algorithm without
Initial Contours and Seed Points,” Machine Vision and
Applications 19(3), 181-193, 2008.

[5] Y. Boykov and M.-P. Jolly: “Interactive Graph Cuts
for Optimal Boundary and Region Segmentation of Ob-
jects in N-D images,” In Proceedings of IEEE Interna-
tional Conference on Computer Vision, pp. 105-112,
2001.

[6] Y. Li, J. Sun, C.-K. Tang, and H.-Y. Shum: “Lazy
Snapping,” ACM Transactions on Graphics 23(3), 303-
308, 2004.

[7] Y. Boykov and G. Funka-Lea: “Graph Cuts and Effi-
cient N-D Image Segmentation,” International Journal
of Computer Vision 70(2), 109-131, 2006.

[8] J. Wang and E. Adelson: “Representing Moving Im-
ages with Layers,” IEEE Transactions on Image Pro-
cessing 3(5), 625-638, 1994.

[9] S. Khan and M. Shah: “Object based Segmentation of
Video using Color, Motion and Spatial Information,” In
Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition, pp. 746-751, 2001.

[10] J. Shi and J. Malik: “Normalized Cuts and Image Pro-
cessing,” IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(8), 888-905, 2000.

[11] S. Birchfield and C. Tomasi: “Multiway Cut for Stereo
and Motion with Slanted Surfaces,” In Proceedings of
IEEE International Conference on Computer Vision,
pp. 489-495, 1999.

[12] J. Xiao and M. Shah: “Motion Layer Extracting in the
Presence of Occlusion using Graph Cuts,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
27(10), 1644-1659, 2005.

[13] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P.
D. Seymour, and M. Yannakakis: “The Complexity
of Multiterminal Cuts,” SIAM Journal on Computing
23(4), 864-894, 1994.

409


