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Abstract

We present in this paper a robust vision-based tracking
control system for an unmanned helicopter to track a mov-
ing ground target. It integrates a real-time vision-based
target detection algorithm with a tracking control law in a
closed loop. First, the proposed target detection algorithm
extracts geometry, color and motion features from captured
images. Based on these features, a finite-state machine is
then introduced to dynamically coordinates the work of de-
cision making under the Bayes framework, and a tracking
control law is designed to minimize a certain tracking error
function. Experimental results obtained from actual flight
tests are also presented and demonstrate the effectiveness
and robustness of our vision-based tracking control system
in real scenes.

1 Introduction

In the last decade, unmanned helicopters equipped with
powerful visual sensors begin to perform a wide range of
tasks, such as vision-aided flight control [1], tracking [2],
terrain mapping [3], and navigation [4]. A basic task among
the various applications of vision on UAVs is vision-based
detection and tracking of objects or features [5]. The fea-
tures of objects, straightforwardly, can be extracted from
photo-metrical appearance of the objects, such as image
templates, geometry, color, texture and many more, which
are referred to as static features. However, pure static fea-
ture detectionmay fail to detect moving targets as a result of
significant variations in the static features caused by nonlin-
ear changes of shapes of the target, noise, distortion, change
of lighting condition, and occlusion in the captured images.

To overcome the drawback of the static features, the be-
havior or motion of the targets, referred to as the dynamic
feature, is also taken into account in the applications of the
moving target tracking. The dynamic feature can typically
be derived from mathematical tools such as the Kalman
filter, Bayesian network, particle filter (see, for example,
[6, 7]). While the motion filters provide target-position
prediction to aid the detection, the predicted position may
cause the target detection algorithm to become trapped into
locking onto objects which are close to the predicted posi-
tion. Hence, to realize robust target tracking in complex en-
vironment, it is necessary to fuse multiple features, includ-
ing static and dynamic features, under a systematic frame-
work [8]. Typically, these features are fused under from
the Bayes framework to neural network to do the pattern
recognition. In addition to the pure tracking in the image
sequences, it is more attractive to integrate vision informa-
tion with the control strategy in the closed loop, which is
referred to as vision-based servoing.

The main contribution of this paper is to present a novel
framework to realize robust vision-based ground target de-
tection for a UAV, and combine the vision target detection
with the control strategy to achieve vision-based tracking in
real scenes. The proposed target detection algorithm fuses
geometry, color and motion features which are described by
moment invariants, a color histogram, and motion estima-
tion of a Kalman filter respectively. A finite-state machine
coordinates the work of decision making under the Bayes
framework by choosing features and adjust the weightings
of different features in the discriminant function dynami-
cally, which is also a contribution of this paper. Second,
a tracking error function is proposed and a proportional-
integral tracking control law is designed and implement in
the on-board system to achieve robust tracking control.

The remainder of this paper is organized as follows. Sec-
tion 2 and 3 detail the vision-based target detection algo-
rithm and the design of the tracking control law. Section 4
describes experiment results of vision-based tracking con-
trol in actual flight tests. The last section summarizes the
paper and discusses the future work.

2 The target detection algorithm

The overall structure of the proposed target detection
algorithm is illustrated in Figure 1, which consists of two
main parts: image processing and decision making.

Figure 1: The Structure of the target detection algorithm
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2.1 Image processing

The purpose of the image processing is to separate the
foreground objects from the background in the images and
extract their static features for the pattern recognition.

2.1.1 Pre-processing

A threshold segmentation approach is applied to the cap-
tured color image based the assumptions that the target
has a distinct color distribution compared to the surround-
ing background. To make the surface color of the target
constant and stable under the varying lighting condition,
the color image is represented in the HSV space[9], which
stands for Hue (hue), Saturation (sat) and Value (val). We
apply pre-defined threshold ranges to hue, sat, and val
channels: huer = [h1, h2], satr = [s1,s2], valr = [v1, v2].
Only the pixel values falling in these color ranges are de-
scribed as foreground points.

2.1.2 Multi-resolution image processing

The multi-resolution image processing aims to remove
noise and false objects, as well as obtains smooth and com-
plete contour of the objects falling in the regions of interest
in the segmented image. This processing uses morpholog-
ical operations and contour tracking, and processes images
from coarse to fine to save computation time.

2.1.3 Geometry feature extraction

The four lowest moment invariants are employed to de-
scribe the geometry features of the objects, which are in-
dependent of position, size and orientation in the visual
field. The four lowest moment invariants is defined based
on the boundary curve of the shape C in the segmented im-
age I(x, y), which is given by
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where ηm
pq , for p+q = 2, 3, . . . , is the improved normalized

central moment defined as below:

ηm
pq =

μc
pq

A(p+q+1)/2

whereA is the interior area of the shape; μm
pq are the central

moments defined as below:

μc
pq =

∫
C

(x− x̄)p(y − ȳ)qds, p, q = 0, 1, . . .

where ds =
√

(dx)2 + (dy)2, and [x̄, ȳ] is the coordinate
of the centroid of the shape in the image plane.

2.1.4 Color feature extraction

We also employ color histogram to represent the color dis-
tribution of the target, which is not only independent of
the target orientation, position and size, but also robust to
partial occlusion of the target and easy to be implemented
in the real-time image processing system. In the proposed
color histogram, hue and val are employed to constructed

the color histogram for object recognition, which is for-
mally defined by:

H = {h(i, j)}i=1,...,Nh ;j=1,...,Nv

h(i, j) =
∑

(x, y)∈Ω

δ(i, [
hue(x,y)

Nh
])δ(j, [

val(x,y)

Nv
]))

where Ω is the region of the target, Nh, Nv are the partition
numbers of hue and val color channels, and δ(a, b) is the
Kronecker delta function defined by:

δ(a, b) =
{

1, if a = b
0, elsewhere

In order to classify the target and other false objects
based on the color distribution, the color histogram inter-
section is employed [10] to match the color histogram of
each object with the pre-defined target template. The color
histogram intersection is defined by:

d(H,G) =

∑Nh

i=1

∑Nv

j=1 min(H(i, j), G(i, j))
min(|H|, |G|)

where |H| and |G| are the numbers of the pixels in the im-
age region H and G. The advantage of this distance for-
mula is that the colors not present in the defined target his-
togram do not contribute to the intersection distance. Then
the effect of the background to the intersection distance can
be reduced.

2.2 Decision making

After we extract above static features from the fore-
ground objects, we also calculate the dynamic motion using
a Kalman filter based on the target’s motion model. Both of
the static and dynamic features extracted are employed in
the pattern recognition.

2.2.1 Motion model

The motion of the centroid of the target: x = [x̄, ˙̄x, ȳ, ˙̄y]T
in the two-dimensional image coordinate is tracked using a
standard 4th-order Kalman filter, which predicts the possi-
ble location of the target in the successive frames. Since the
visual sensor is attached to the moving pan/tilt servos, the
predicted location of the centroid of the target is compen-
sated by the motion of the servos, which is defined by:

zk =
(
x̄
ȳ

)
k

+
[
fc 0
0 fc

] (
tan(utilt

k )
tan(upan

k )

)

where fc is the normalized focal length of the visual sensor;
utilt

k , upan
k are the control signals to the pan/tilt servo in the

unit of radian.
The distance between location of each object zki and the

predicted location of the target zk is employed as the dy-
namic feature defined by:

z̃k = zki − zk

2.2.2 Pattern recognition

We use the discriminant function, derived from Bayes the-
orem, to determine the target based on the measured fea-
ture values of each object and the known distribution of
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features of the target obtained from training data. We as-
sume these features are independent and fulfill normal dis-
tribution. Thus we can define the simplified discriminant
function and classifier with weightings as:

f ′1(αi) =
n∑

k=1

(αi,k)2wk (1)

h′(α1, α2, . . . , αi, . . .) = arg min
i
f ′1(αi) (2)

where αi = (αi,1, αi,2, . . . , αi,n)t is derived by
normalizing the feature vector of the object i:
[φ1, φ2, φ3, φ4, d, z̃k]i based on the distribution of
each feature.

Decision making is based on the discriminant function
with weightings:

D =
{

target = h′(α1, . . . , αi, . . .), if min f ′1(αi) < Γ
no target in the image, if min f ′1(αi) ≥ Γ

Γ is the threshold valued which is decided experientially
based on training data. Then this function of the classifier
is to assign the target class to the object whose value of the
discriminant function is the smallest, and also smaller than
the specified threshold value.

2.2.3 Finite state machine

The finite state machine plays a critical role in our project
to dynamically chooses necessary features and give differ-
ent weightings to each features in the discriminant function
under different tracking conditions, shown in Figure 2. In
the state 0 (S0): since there is no target found in the image,
only pure static features are used in discriminant function
(Equation 1) to identify the target in the entire image.

Figure 2: Decision making using finite state machine

In the state 1 (S1): the same target has continously been
found by the algorithm less than n frames. The discrimi-
nant function in (1) still uses static features in the pattern
recognition, but enables a Kalman filtering to estimate the
possible location of the target in the next frame.

In the state 2 (S2): the same target has continously been
found by the algorithm more than n frames. We then have
confidence to decide that this target is the one we want and
use both static and dynamic features in the discriminant
function to identify and lock the target in the successive

Frame 2306 Frame 2307

Frame 2309 Frame 2313

Figure 3: Tracking with occlusion

frames, which can reduce the error of detecting a false tar-
get.

In the state 3 (S3): the target is lost by the vision detec-
tion algorithm. If the partial occlusion detection, based on
Chi-square test, indicates that the target is still in the image
and may be partially occlude, we manage to give the high
weightings to the dynamic features and the color feature,
which are less affected by the partial occlusion, while re-
duce the weightings to the geometric features. We keep this
setting of the discriminant function for m frames to try to
retrieve the target in the nextm frames.

Figure 3 shows an example of the tracking a toy car
using the proposed the vision detection algorithm in the
ground test. In Figure 3, the solid window is the measured
location of the target, and the dash window is the predicted
location of the target in the image plane. First the vision de-
tection algorithm automatically initialize the detection, then
lock the target. When the target is partially occluded, the
vision algorithm give high weightings to the dynamic and
color features in the discriminant function. Thus, the target
still can be detected, even thought it is partially occluded.

3 Tracking control

After detecting the target in the image, the visual track-
ing control system is proposed to control the pan/tilt servo
mechanism to minimize a tracking error function, which is
also called eye-in-hand visual servoing. In our project, the
tracking error function is defined in the visual sensor frame
as:

e(t) =
(
θc
φc

)
−

(
θ∗c
φ∗c

)

=

⎛
⎜⎝

tan−1(
x̄

fc
)

tan−1(
ȳ√
f2

c + x̄
)

⎞
⎟⎠ −

(
θ∗c
φ∗c

)
(3)

where [θc, φc]T are the measured relative angles between
the physical center of the visual sensor and the target illus-
trated in Figure 4, and [θ∗c , φ∗c]T are the desired relative
angles.

The purpose of the design of the tracking control law
is to minimize the error function given in (3) by choosing
a suitable control input u(k). We employ a PI controller
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Figure 4: The relative angle between the UAV and target.

Table 1: Experimental results

Times Total frame Detected frames Accuracy
1 219 191 87.21%
2 284 209 73.59%
3 703 538 76.53%
4 375 295 78.67%
5 676 508 75.15%
6 431 311 72.16%
7 108 91 84.26%
8 1544 1162 75.26%
9 646 529 81.89%

given by

u(k) = kpe(k) + kiTs

k∑
i=1

e(i) (4)

We choose kp = 1 and ki = 0.75 for both of the pan/tilt
servo controllers based on the model of the pan/tilt servo
mechanism, and verify the controllers in simulation and
ground tests.

4 Experiment results and discussion

The proposed vision-based tracking algorithm is imple-
mented in the on-board system of the unmanned helicopter:
SheLion. The processing rate of the algorithm is 16 fps.
During the real flight tests, the helicopter is manually con-
trolled to hover at a fixed position 10 meters above the flat
ground, and the on-board visual tracking system automati-
cally identify and track the ground moving target: a toy car,
which is manually controlled to randomly move in the flat
ground. We performed nine times of visual tracking tests
and the tracking results are shown in table 1. During these
tests, the visual tracking system can successfully identify
and track the ground target. One example of the tracking
errors in vertical and horizontal direction is shown in Fig-
ure 5, which indicates that the tracking error is bounded.

The experimental results demonstrate the robustness and
effectiveness of the visual tracking system, which can au-
tomatically identify and track the moving target in the real
flight. The tracking errors, however, are greater than these
in ground tests, since the ego-motion and vibration of the
UAV platform may degrade the performance of the visual
tracking system. That is the reason why we are going to
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Figure 5: The tracking error of θc and φc.

consider the ego-motion compensation of the UAV in the
further visual tracking algorithm.

5 Conclusion

In this paper, we present the design and implement of
the visual tracking system to realize on-board tracking a
ground moving target for a UAV, which combines the pro-
posed vision-based target detection algorithm with tracking
control strategy. The experiment results obtained from the
real flight tests of the UAV show that the vision-based track-
ing system is to be able to automatically identify and track
groundmoving target, and the tracking error is bounded. To
reduce the tracking error, more research effort will be given
to integrate the ego-motion of the UAV with the vision-
based tracking control system in the further research,.
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