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Abstract

We describe a model driven approach for extracting
simple 3D polyhedral building models from aerial
images. The novelty of the approach lies in the use
of featureless and direct optimization based on image
rawbrightness. The 3D polyhedral model is estimated
using a stochastic and genetic optimizer that mini-
mizes a global dissimilarity measure. The proposed
approach gives more accurate 3D reconstruction than
feature-based approaches since it does not involve
intermediate noisy data (e.g., the 3D points of a noisy
Digital Elevation Maps). We provide experiments and
evaluations of performance. Experimental results show
the feasibility and robustness of the proposed approach.

Keywords: Image based 3D building modeling, fea-
tureless approach, Differential Evolution algorithm

1 Introduction

The extraction of 3D models of buildings is currently
a very active research area since it is a key issue in ur-
ban planning, virtual reality, and updating databases
for geo-information systems, to name a few. For roof
building reconstruction the main source of data is aerial
images [9]. The proposed methods for building recon-
struction differ by the assumption made as well as by
the type of input data. However, one can easily classify
these approaches into two main categories: bottom-up
and top-down approaches. In theory, bottom-up ap-
proaches can handle the case where there is no prior
knowledge about the sought building model. On the
other hand, top-down approaches rely on some prior
knowledge (e.g., using parametric models).Both cate-
gories have been used with features that are extracted
and matched in at least two images. For roofs, the
most used image features are 2D segments and junc-
tions lines that are converted into 3D features. The
final polyhedral model is then estimated from these 3D
features. Model-based reconstruction techniques were
first applied in digital photogrammetry for the (semi-
)automatic reconstruction of buildings in aerial images
with the help of generic building models [1, 3, 6]. Sev-
eral researchers have tried to fully automate the pro-
cess by using automatically detected lines. A typical
feature-based approach is described in [4].

In this paper, we propose a featureless approach
that extracts simple polyhedral building models from
the rawbrightness of calibrated aerial images where the
footprint of the building in one image is obtained ei-
ther manually or automatically [5]. We were inspired

by the featureless image registration techniques where
the goal is to compute the global motion of the bright-
ness pattern between them (e.g., affine or homography
transforms) without using matched features [7]. Unlike
existing approaches, our approach derives the polyhe-
dral building model by minimizing a global dissimilar-
ity measure based on the image rawbrightness. It is
carried out using a stochastic and genetic optimizer.
To the best of our knowledge the use of featureless
and direct approaches has not been used for extract-
ing polyhedral models of buildings. In any feature-
based approach, the inaccuracies associated with the
extracted features, in either 2D or 3D, will inevitably
affect the accuracy of the final 3D model.

Recently, many researchers proposed methods for
extracting polyhedral models from Digital Elevation
Maps (DEMs) (e.g., [3]). Compared to these ap-
proaches, our method has the obvious advantage that
the coplanarity constraints are implicitly enforced in
the model parametrization. On the other hand, the ap-
proaches based on DEMs impose the coplanarity con-
straint on the 3D points of the obtained surface in the
process of plane fitting. DEMs are usually computed
using local correlation scores together with a smooth-
ing term that penalizes large local height variation.
Thus, correlation-based DEMs can be noisy. Moreover,
height discontinuities may not be located accurately.
In brief, our proposed approach can give more accu-
rate 3D reconstruction than feature-based approaches
since the process is more direct and does not involve
intermediate noisy data (e.g., the 3D points of a noisy
DEM). The remainder of the paper is organized as fol-
lows. Section 2 states the problem we are focusing
on and describes the parametrization of the adopted
polyhedral model. Section 3 presents the proposed ap-
proach. Section 4 gives some experimental results.

2 Problem statement and model
parametrization

Since aerial images are used only roof models can be
estimated. In this work, we restrict our study to simple
polyhedral models that are illustrated in Figure 1. The
model illustrated in Figure 1.(a) can describe a build-
ing roof having two, three, or four facets by varying
the 3D location of the inner vertices.

These models can describe all typical situations: non
symmetric shape, sloping ground or roofs (i.e., every
vertex can have a different height). Because a complex
building can be described as an aggregation of simple
building models, our approach can also deal with com-
plex buildings once a partitioning of the building into
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simple building-parts is done.

(a) (b)

Figure 1: The adopted simple polyhedral models. (a)
The multi-facet model. (b) The one facet model.

The problem we are focusing on can be stated as
follows. Given the footprint of a building in one aerial
image we try to find the polyhedral model (an instance
of the models depicted in Figure 1) using the raw-
brightness of the aerial images that views this build-
ing. Without loss of generality, we restrict our study
to the use of two images. Extending the approach to
the multi-view case is straightforward.

The flowchart of the proposed approach is depicted
in Figure 2. Since the images are calibrated and since
the outer vertices are known in one image, our polyhe-
dral model can be parameterized by eight parameters:
four parameters for the image location of the inner ver-
tices M and N and four parameters for the height of
the vertices A, M , N , and C. The remaining vertices
are determined by intersecting the corresponding line
of sight with the estimated support planes.

The eight parameters are encapsulated into one sin-
gle vector w:

w = (UM , VM , UN , VN , ZA, ZM , ZN , ZC)T (1)

where (UM , VM ) and (UN , VN ) are the image coordi-
nates of the vertices Mand N , respectively. Recall that
the 3D coordinates are expressed in a local coordinate
system whose Z axis coincides with the ground nor-
mal (the aerial images are geo-referenced). In practice,
although the location of inner vertices is not known,
the 2D line (the projection of a ridge segment) going
through them can be easily extracted from the image
by using a simple edge detector followed by a Hough
transform. Once the equation of this line is known, the
parametrization of the building model can be simplified
to:

w = (λM , λN , ZA, ZM , ZN , ZC)T (2)

where λM and λN parameterize the location of the in-
ner vertices along the 2D segment obtained by inter-
secting the 2D line with the building footprint. Thus,
finding the model boils down to finding the vector w.

3 Proposed approach

The goal is to compute the parameters of the poly-
hedral model given two images one of which contains
the external boundary of the building. This boundary
is provided either manually or automatically. The ba-
sic idea relies on the following fact: if the shape and the
geometric parameters of the building (encoded by the
vector w) correspond to the real building shape and
geometry, then the pixel-to-pixel mapping between the
image I1 and the image I2 will be correct for the en-
tire building footprint. Recall that w is defining all

Figure 2: The flowchart of the proposed approach for
extracting 3D polyhedral model from image rawbright-
ness.

support planes of all the building’s facets and thus the
corresponding pixel p′ of any pixel p is estimated by
a simple image transfer through homographies (3×3
matrices) based on these planes. Therefore, the associ-
ated global similarity over these pixels reaches a maxi-
mum. In other words, the global dissimilarity measure
reaches a minimum. The global dissimilarity is given
by the following score:

e =
∑

p∈S

ρ(|I1(p) − I2(p′)|) (3)

where S is the footprint of the building in the first im-
age I1, ρ(x) is a robust error function, and p′ is the
pixel in the second image I2 that corresponds to the
pixel p. The choice of the error function ρ(x) will de-
termine the nature of the global error (3) which can be
the Sum of Squared Differences (SSD) (ρ(x) = 1

2 x2),
the Sum of Absolute Differences (SAD) (ρ(x) = x),
or the saturated Sum of Absolute Differences. In gen-
eral, the function ρ(x) could be any M-estimator [2].
In our experiments, we used the SAD score since it is
somewhat robust and its computation is fast.

We seek the polyhedral model w� =
(λ�

M , λ�
N , Z�

A, Z�
M , Z�

N , Z�
C)T that minimizes the above

dissimilarity measure over the building footprint. This
is given by:

w� = arg min
w

e (4)

= arg min
w

∑

p∈S

ρ(|I1(p) − I2(p′)|) (5)

Recall that during the whole process there is no fea-
ture extraction nor matching with the second image. In
order to minimize (5) over w, we use the Differential
Evolution algorithm [8]. This is carried out using gen-
erations of solutions—populations. The population of
the first generation is randomly chosen around a rough
solution. The rough solution is simply given by a zero-
order approximation model (flat roof model) which is
also obtained by minimizing the dissimilarity score over
one unknown (the average height of the roof). We use
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the Differential Evolution optimizer since it has two in-
teresting properties: (i) it does not need an accurate
initialization, and (ii) it does not need the computation
of partial derivatives of the cost function.

In brief, the proposed approach proceeds as follows.
First, the algorithm decides if the building contains
one or more facets, that is, it selects either the model
of Figure 1.(a) or the model of Figure 1.(b). This
decision is carried out by analyzing the 3D normals
associated with four virtual triangles forming a parti-
tion of the whole building footprint. Second, once the
model is selected, its parameters are then estimated by
minimizing the corresponding dissimilarity score.

4 Experimental results

The proposed approach has been tested with a set
of calibrated aerial images depicting a part of the city
of Marseille. The resolution of these aerial images is
4158 × 4160 pixels. The ratio between the baseline to
the camera height is about 0.18. One pixel corresponds
to a 10 cm square at ground level.

Figure 3 shows the results obtained with two images
depicting a four facet building. (a) shows the footprint
of the building (manually selected) in the first image.
(b) shows the estimated 3D polyhedral model. (c)
shows the projection of the this polyhedral model onto
the same image. (d) displays the variation of the
best SAD as a function of the iteration number. One
can see easily that the Differential Evolution algorithm
succeeded to estimate the correct 3D polyhedral model,
i.e., the six unknown parameters (see the estimated
location of the two inner vertices). Moreover, one can
notice that the convergence was obtained in about five
iterations/generations. The population size was 40.

Figure 4 illustrates the best model obtained at differ-
ent iterations of the Differential Evolution algorithm.
The projection of the model onto the first and second
images is shown in the first and second columns, re-
spectively. The third column illustrates the associated
3D model.

Figure 5 shows the results obtained with a three
facet building. Figure 6 illustrates the estimated model
in cases where buildings are affected by shadows. De-
spite the presence of significant shadows the estimated
polyhedral models are correct.

Method comparison. So far the performance eval-
uation was qualitative, i.e., the goodness of the model
was assessed by the projection of the estimated model
segments and vertices onto the two images. In order to
get quantitative evaluation we compared our method
with a 3D reconstruction obtained from DEMs.

Table 1 depicts the 3D reconstruction results asso-
ciated with one facet having three vertices (only the
heights are shown). The first column corresponds to
the reconstruction obtained with a DEM (robust plane
fitting), the second column to our approach adopting
the SSD function, and the third column to our ap-
proach adopting the SAD function. The last row shows
the average deviation between the estimated model and
the model obtained with the DEM. We point out that
the DEM based model is not providing the ground-
truth data.

DEM SSD SAD

Vertex1 height 41.96m 42.75m 42.22m
Vertex2 height 41.36m 40.87m 40.98m
Vertex3 height 39.78m 40.10m 40.22m
Average deviation 0.0m 0.53m 0.36m

Table 1: Method comparison associated with one facet
having three vertices. The first column depicts the
estimated height of the model vertices obtained with
a DEM. The second (third) column displays the esti-
mated heights using our approach with SSD function
(SAD function).

Model extraction in the presence of superstruc-
tures. In some cases, roofs include superstructures
(detailed volumes present on roofs such as chimneys,
dormer windows...). Since the image regions of these
superstructures do not obey the image transfer law as-
sociated with their support roof plane, they should be
excluded in the global cost function (5) in order not to
bias the reconstruction results.

To this end, two stages are invoked. In the first
stage, the Differential Evolution optimizer is run in a
straightforward manner using the total footprint of the
building. Using this solution, the individual residuals
(the absolute difference for each pixel) are computed.
Outlier pixels are then identified by using a threshold
depending on the median value of all residuals. Once
the outlier pixels are detected, the Differential Evolu-
tion optimizer is used with all inlier pixels.

Figure 7 shows the application of this strategy on a
selected facet. The upper part of this figure shows the
selected facet. The middle part shows the detected out-
lier pixels. One can notice that detected outliers have a
significant overlap with the superstructures. The lower
part shows the average deviation (in Z) of the esti-
mated facet model and the model obtained with the
DEM with and without outlier filtering.

(a) (b)
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(c) (d)

Figure 3: (a) the selected building in the first image.
(b) the estimated 3D polyhedral model. (c) the pro-
jection of the model onto the image. (d) the evolution
of the best SAD as a function of the iteration number.
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Figure 4: The best solution at several iterations of the
Differential Evolution algorithm.
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Figure 5: (a) the selected building in the first image.
(b) the estimated 3D polyhedral model. (c) the pro-
jected model onto the image. (d) the evolution of the
best SAD as a function of the iteration number.

Figure 6: Estimated 3D polyhedral models from aerial
images. One can notice that despite the presence of
significant shadows the approach has provided the cor-
rect models.

DEM without filtering with filtering

Ave. deviation 0.0m 0.46m 0.36m

Figure 7: Top: the selected facet. Middle: the de-
tected outlier pixels. Bottom: the deviation of the 3D
facet without and with outliers filtering. The outliers
have a significant overlap with the superstructures.

5 Conclusion

We presented a direct model driven approach for ex-
tracting 3D polyhedral building models from calibrated
aerial images. The approach does not require feature
extraction and matching in the images. Moreover, it
does not rely on Digital Elevation Maps. Experimen-
tal results show the feasibility and robustness of the
proposed approach. Future work may investigate the
extension of the approach to generic building models.
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