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Abstract

This paper presents a novel approach for detecting mul-
tiple instances of the same object for pick-and-place au-
tomation. The working conditions are very challenging,
with complex objects, arranged at random in the scene, and
heavily occluded. This approach exploits SIFT to obtain a
set of correspondences between the object model and the
current image. In order to segment the multiple instances
of the object, the correspondences are clustered among the
objects using a voting scheme which determines the best
estimate of the object’s center through mean shift. This
procedure is compared in terms of accuracy with existing
homography-based solutions which make use of RANSAC
to eliminate outliers in the homography estimation.

1 Introduction

Computer vision and pattern recognition techniques have

been widely used in the past for industrial applications and

especially for robot vision. In many fields of industry, in-

deed, there is the need to automate the pick-and-place pro-

cess of picking up objects, possibly performing some tasks,

and then placing down them on a different location. Most

of the pick-and-place systems are basically composed of

robotic systems and sensors. These sensors are in charge of

driving the robot arms to the right 3D location (and possibly

orientation) of the next object to be picked up, according to

the robot’s degrees of freedom. The placing points are usu-

ally predetermined and sensors are rarely used to guide the

place phase. Conversely, object picking can be very com-

plicated if the scene is not well structured and constrained.

Most of the picking systems consider the case of well

separated objects, well aligned on the belt and with a syn-

chronized grasping of the objects. In this case, simple pho-

tocells can be used to trigger the picking phase. However,

there are several applications in which this approach will be

insufficient, since forcing the objects to stay well separated

and aligned on the belt will waste space and time of the pro-

cess. Moreover, there can be objects which needs to and are

convenient to be kept in bins, for saving time and/or for hy-

gienic reasons, as shown in Fig. 1. In this scenario, (high

resolution) cameras should be used, together with specific

machine vision algorithms.

In the case the objects are positioned at random inside a

bin, a container or even at random on a belt/shelf, this prob-

lem is called bin picking [6]. A vision-based bin-picking

system presents several challenges: (1) it should be capable

to work with every type of object of different dimension;

(a) (b)

Figure 1: Examples of complex situations for multiple ob-

ject segmentation.

(2) objects could be very complex, with many faces, reflec-

tive surfaces or they could be packaged in transparent flow-

packs; (3) these applications often require very high work-

ing frequency, reaching easily requirements of some hun-

dreds of pieces per minute; (4) in bin picking applications,

objects are very cluttered and the many (self-)occlusions

make the object only partially visible (see Fig. 1). Some-

times matching between image and 3D CAD models is pro-

vided; this way is often not affordable since 3D models are

not always available and their acquisition is expensive and

time consuming; moreover, time constraints would make

unsuitable complex fitting of 3D models, which also need

to be invariant to projective 3D transformations.

The approach described in this paper is meant to tackle

all these points by proposing a feature-based segmenta-

tion technique capable to segment multiple occluded ob-

jects. When objects are complex, reflective, low-textured

and heavily occluded, very few distinctive feature points

can be extracted from the image. Having few features to

be matched with the original sample, segmentation of mul-

tiple instances of the object is not straightforward. Thus,

this work proposes the use of a voting scheme to cluster the

matched feature points among the different instances. Once

clustered, these points vote for principal points of the ob-

ject, i.e. points which characterize and delimit the object

shape, such as the four corners in the case of a rectangular-

like shape. These points can be used as both delimiters of

the object for the segmentation and picking points, depend-

ing on the end effector of the robot.

2 Related Works

From the applications’ point of view, the scientific liter-

ature in vision-based pick-and-place is very profuse, even

though quite outdated. For instance, the pioneering work

[7] exploits image processing techniques to determine the

grasping points for picking up unknown everyday objects.
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Basic techniques are exploited: thresholding is used to seg-

ment objects and moments are computed to determine the

location of the center of gravity and the orientation of the

main inertial axis. In another work, Rahardja and Kosaka

[6] propose the use of stereo vision to perform bin picking

of industrial complex objects. Simple visual features, such

as region area, eccentricity, and gray scale mean value, are

adopted for object recognition and pose estimation.

Unfortunately, these approaches adopt so simple image

processing techniques that in complex scenes containing

multiple objects, such as those reported in Fig. 1, cannot be

applied. An alternative way instead of object segmentation

is the detection-by-feature approach which searches for dis-

criminative local features. This proposal is very old [4] and

it is called local-feature-focus. This algorithm recognizes

and locates partially visible 2D objects, by not performing

the segmentation globally at pixel level, but on higher-level

features, such as round holes and convex or concave 90◦

corners. The algorithm searches for a cluster of local fea-

tures in a relative configuration which is characteristic of

that specific object. One feature in the cluster is selected

as the “focus” feature, i.e. the one with respect to which

the other features are located. This approach accounts also

for complex structure of features, by means of binary deci-

sion trees and feature indexed hypotheses. These methods

exploited very specific features (such as round holes) that

cannot be extended for whichever type of object.

Similarly, we do not exploit a global segmentation strat-

egy. The basic idea is to find matches between the rough

model of the object expressed in terms of local visual fea-

tures (directly extracted by a sample image of it, and not

by complicated synthetic models), and the current image.

Differently to the above-mentioned papers, our approach

uses very simple features, based on single-point SIFT [5]

feature detector. The approach is attractive because of its

generality and the proven robustness. In fact, the use of

SIFT point-based features increases the possibility to find

sufficient matches in order to have reliable segmentations.

However, as demonstrated in [3], this approach is prone to

errors in those applications where images may lack enough

distinctive features. To overcome to this problem, Hess and

Fren [3] propose to further improve the registration between

two images by exploiting, together with the SIFT-based dis-

trinctive features, a refined local set of features in which the

SIFT matching criteria are applied on a region centred on

the global keypoints.

In our approach, the spatial relationships among the

matched SIFT features are then used to cluster features be-

longing to multiple instances of the object. The features are

grouped with the mean shift clustering technique [2]. Other

works follow a similar approach, such as [8], where a PCA-

SIFT approach is used to identify multiple instances of the

same object in real time and a voting scheme similar to ours

is used, but the achieved clustering is used only for local-

ization purposes and not for detecting overlapped objects.

3 Homography-based Segmentation

The final objective of the system is to segment as many

objects as possible in cluttered scenes as those reported in

Fig. 1. The 2D segmentation process, together with a laser-

based method for estimating the distance from the camera,

will provide coordinates of one or more grasping points for

each object to be picked up.

Our proposal goes through the following two phases:

1. Feature extraction and matching: significant features

are extracted from both the object model and the cur-

rent image; given a proper similarity measure, features

are matched between the model and the current image,

and the best correspondences are retained;

2. Object segmentation: given the set of correspon-

dences, it is possible to compute a registration trans-

form between the model and the segmented object in

the current image.

The point 1 is achieved by using th SIFT feature detector

and the 2NN (two nearest neighbors) heuristic proposed in

[5]. The 2NN heuristic basically retains only the features

F for which the ratio between the first nearest neighbor and

the second nearest neighbor (wrt the Euclidean distance be-

tween the 128-long feature descriptors) is lower than a given

threshold. The SIFT and 2NN heuristic have proven to be

very robust in many contexts and invariant (at some extent)

to rotations, scaling, noise and illumination changes.

Let us call M = {m1, . . . ,mN} the set of N matches

found between the model M and the current image I , where

each match mi contains the (x, y) coordinates on the two

reference systems: mi =
〈(

xM
i , yM

i

)
,
(
xI

i , y
I
i

)〉
. Given

this set, the simplest approach for computing the regis-

tration transform between M and I (point 2 above) is to

estimate the planar homography using a least squares ap-

proach. Alternatively, direct linear transform (DLT) or sin-

gular value decomposition (SVD) can be used to solve effi-

ciently the system of linear equations obtained by the cor-

respondences [3].

(a) Matched features (b) Homography

without RANSAC

(c) Homography

with RANSAC

Figure 2: Wrong homography due to outliers.

Unfortunately, all these approaches are very sensitive to

outliers in the set of correspondences. For instance, Fig.

2(b) shows an example of incorrect homography obtained

by least square method using all the matches: it is evident

that some of these matches are outliers in the estimation

of the homography’s parameters. A well known method to

deal with the outliers is provided by RANSAC [1] which

finds a set of inlier correspondences which can be used for

computing the transform as described above.

The result of estimating the planar homography from the

matches in Fig. 2(a) (the model is in the top-left corner,

highlighted in white) with RANSAC and least square esti-

mation is shown in Fig. 2(c). Although the result is ap-

preciable, this approach still presents some drawbacks. The
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first is that, in the case of multiple instances of the same

object, the SIFT does not guarantee to find all the corre-

spondences on the same instance. Even though RANSAC

can, at a certain level, handle this situation by iteratively

estimate the most consistent set of matches (as in the case

of Fig. 2(c)), it is not able to cope with a large number of

outliers due to the presence of multiple instances, as shown

in the example of Fig. 3(b). A possible solution, described

in the next section, is to cluster the matched features M,

and then perform RANSAC and least square for each clus-

ter of features separately. In this manner, multiple homo-

graphies can be estimated, one for each detected instance

of the object. Nevertheless, even though it leads to better

results (as will be shown in Section 5), this approach splits

the setM in several clusters, and this gives fewer points on

which the homographies’ parameters are estimated, result-

ing, typically, in less accurate results.

With these premises, the next section will propose an in-

novative solution for estimating the geometrical transform

between the model and the object’s instances.

(a) Matched features (b) Hom.-RANSAC

all matches

(c) Hom.-RANSAC

clustered

Figure 3: Wrong homography due to multiple instances.

4 Segmentation of Multiple Instances

Instead of applying RANSAC on the entire set M, we

can first partition the set on S subsetsMi possibly contain-

ing only the features belonging to a single object/instance

Oi. The clustering of features can be performed by con-

sidering, similarly to [8], the relative position of each fea-

ture with respect to the center of the object. In practice, the

user defines the center of the object model. Then, given the

set M of correspondences, the vector wrt the center in the

model coordinate system is computed and stored for each

match my . Exploiting the information about the main ori-

entation of the feature provided by SIFT, the object’s center

position in the image coordinate system can be easily esti-

mated by assuming a pure roto-translational transform (also

known as Euclidean transform).

Given the approximation of the feature location, the

noise and the simplifying assumption of Euclidean trans-

form, the estimate of the object’s center is not precise. To

account for this, we cluster the center’s estimates (obtained

from every match my ∈ M) by using the mean shift [2],

which provides also a good estimate of the center’s loca-

tion. By running the RANSAC and least square on each

subset Mi, the resulting homographies are generally more

accurate, as shown in Fig. 3(c), where only one of the ho-

mographies is drawn. This method will be hereinafter called

RANSAC clustered.

However, this approach still presents the problem of be-

(a) Matched features (b) Homography-

RANSAC clustered

(c) Our approach

Figure 4: Wrong homography due to few collinear matches.

ing inaccurate if few matches per instance are available

and/or if these matches are fairly collinear (see Fig. 4(b)),

where the few matches on the middle object are collinear

and the resulting homography is imprecise. Moreover,

RANSAC’s result is unpredictable due to its random sam-

pling procedure, which might be a problem in industrial

applications. Our proposal is to further relax the prob-

lem’s conditions by assuming a complete Euclidean trans-

form for all the pixels of the model (not only the center).

This means that we only consider in-the-plane rotations and

translations, not permitting the model to scale (reasonable

condition if we assume that the objects are more or less at

the same distance from the camera) or to rotate (much) out

of the image plane. It is also worth noting that a precise

segmentation is not required since our goals are to find the

grasping points and to evaluate occlusions (in order to avoid

the picking of covered objects).

The complete procedure can be summarized as follows:

1. during the definition of the object’s model, the user can

select L principal points P = {P0, . . . , PL}, where

P0 is the center of the object and the other points rep-

resent both other grasping points and points delimit-

ing the objects, such as extrema points of the oriented

bounding box;

2. with the mean shift clustering, the setM of correspon-

dences are partitioned in subsets Mi for each of the

instances found in the current image;

3. for each my ∈ Mi, the estimate for each of the L
principal points is computed; let us define as P i

j,y the

estimate obtained from match my of instance Oi for

the principal point Pj , with j = 1, . . . , L;

4. L − 1 mean shift algorithms are issued to find the

best estimate P i
j,∗ for Pj in Oi; in this case, the mean

shift is not employed for clustering, so a simpler tech-

nique (e.g., to compute the average location) should be

enough; however, computational complexity of mean

shift with some tens of points, as in most of our cases,

is negligible;

5. the L−1 estimates P i
j,∗ are used to obtain the segmen-

tation of Oi.

Fig. 4(c) shows how we can solve with our approach

the problem inherent to homography. Additionally, Fig. 5

shows two examples of the result achieved with this proce-

dure. The large green circles represent the estimates P i
0,∗

of the object’s center and the values close to them are the
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(a) (b)

Figure 5: Examples of the segmentation results.

number of matches assigned to that object through the clus-

tering. The small circles in blue, magenta, yellow and

green represent the estimates P i
j,y of the other four principal

points (the extrema of the bounding box, in these examples).

Note that the estimates are mixed up and fairly distributed,

but the mean shift is nonetheless capable to act correctly.

The white lines connect the estimates P i
j,∗ of the principal

points and are the boundaries of the final segmentation. It

is evident that this approach is able to segment also very

occluded objects, as shown in Fig. 5(b).

5 Experimental Results

In order to evaluate our approach in challenging sit-

uations we perform extensive experimentation with three

types of very diverse objects: boxes of fruit juices (see Fig.

1(a)), packs of Nutella (Fig. 1(b)) and paper flyers (Fig.

5(b)). These objects have different characteristics, such as

the reflectiveness of fruit juices, the non-regular shapes of

Nutella’s packs or the very dark appearance of the flyers.

The accuracy of our approach can be measured by means

of three different metrics: the precision/recall at object-
level, the precision/recall at pixel-level and the accuracy of

the center location. The first metrics accounts for how many

correct objects are segmented (where correct segmentations

are evaluated by the operator), while the second considers

the pixel-by-pixel segmentation. In this case, the precision

and the recall are computed with reference to all the objects

to be segmented, and thus the recall tends to be very low if

some objects are missed. Finally, the last metrics is more

application-oriented, thinking to a pick-and-place applica-

tion where the accuracy in determining the grasping point

(e.g., the center) is crucial. All these measures are com-

puted with respect to a manually-determined ground truth.

Results are summarized in Table 1. We compared our

proposal with the use of homography-based segmentation

by either RANSAC on all the matches (all RS in Table 1)

or RANSAC on clustered matches (clus RS), as described

in the previous Section. Since the RANSAC applied on all

the matches finds a single instance of the object, the preci-

sion at object-level is close to 100%, but the recall at object-

level is very low. Instead, the RANSAC applied to clustered

matches shows a poor accuracy in identifying the center.

This is due to the fact that this algorithm finds more objects

than the version on all the matches (precision/recall both at

object- and pixel-level are higher), but the resulting homo-

graphies are less accurate since they are estimated by fewer

matches.

Fruit Juices
Object-level Pixel-level Center

Precision Recall Precision Recall Mean

all RS 100.00% 25.00% 22.95% 23.66% 5.41 px

clus RS 91.67% 82.50% 77.43% 79.93% 18.97 px

Ours 97.37% 92.50% 88.55% 87.64% 5,76 px
Nutella Packs

Object-level Pixel-level Center

Precision Recall Precision Recall Mean

all RS 100.00% 15.38% 13.23% 14.46% 6.98 px

clus RS 66.67% 33.85% 38.96% 35.82% 17.24 px

Ours 97.84% 86.78% 82.87% 83.13% 3.86 px
Paper Flyers

Object-level Pixel-level Center

Precision Recall Precision Recall Mean

all RS 90.00% 16.36% 17.46% 15.72% 14.68 px

clus RS 74.00% 64.91% 71.31% 68.46% 22.27 px

Ours 96.15% 90.91% 86.35% 89.39% 2.66 px

Table 1: Experimental results.

Our approach outperforms the other two in all the cases

and for every metrics, with average precision and recall

at object-level of 97.84% and 86.78%, at pixel-level of

82.87% and 83.13%, and an average center’s distance of

3.86 pixels. Additionally, our approach is much faster than

the others since it avoids both the iterative procedure of

RANSAC and the least square estimation. On average, our

system takes about 1.2 seconds for each image to segment a

number of objects between 3 and 10, while the RANSAC-

based approaches take 4.41 sec. and 4.27 sec., in the case

of clustered and non-clustered matches, respectively. These

time performances have been obtained on a standard Win-

dows XP PC with Core Duo at 2.4 Ghz processor and 2 GB

of memory.
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