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Abstract

Some traffic monitoring systems have been proposed
for predicting behaviors of vehicles. However, a few at-
tempts have been made at estimating how vehicles influ-
ence each other at some time point in the near future.
In order to estimate such interactions, we introduce a
concept of Attainable Region to predict future behav-
iors of vehicles. Attainable Region is efficient to esti-
mate interactions between vehicles in the near future.
Through evaluation experiments, we show the feasibil-
ity of prediction with Attainable Region.

1 Introduction

Visual surveillance in the real world is an active re-
search topic in machine vision community [1]. Many re-
searchers have made great efforts to improve techniques
in this area and many applications have been devel-
oped. Especially, traffic monitoring systems are well-
known applications of visual surveillance. For example,
anomaly detection [2] and collision prediction [3, 4] are
generally cited as the applications. Such systems pro-
vide valuable information using knowledge about vehi-
cle behaviors by modeling and analyzing traffic scenes.
Future behaviors of vehicles are an important facet of
the knowledge for the system to assist drivers. Further-
more, interactions between vehicles at some time point
in the near future cannot be neglected when vehicles
influence each other in traffic scenes. For example, in
case two vehicles are about to collide, the interaction
between them should be estimated and the drivers are
alerted as soon as possible. In order to consider how
vehicles influence each other in the near future, a vehi-
cle which has an influence on a behavior of a particular
vehicle should be estimated.

Atev, et al. [3] have presented a vision-based sys-
tem that issues warnings about imminent collisions on
the assumption that velocities of vehicles stay constant.
Although this assumption is reasonable in case of short
time interval for prediction, it is unreasonable in case
of some measure of the time interval because veloc-
ity and acceleration of vehicle are changeable elements
at each frame. Prior knowledge in the scene is essen-
tial to predict vehicle behaviors for such time interval.
Saleemi, et al. [5] have proposed a method for mod-
eling and learning the scene activity to obtain prior
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Figure 1: Our framework. The learning phase is an off-
line step and the predicting phase is an on-line step.

knowledge in the scene. Future positions of vehicles
are estimated based on their velocities and prior knowl-
edge. This approach, however, ignores size of vehicles
and does not address estimating interactions between
moving objects.

In this paper, we focus on such interactions and pro-
pose a concept of Attainable Region for predicting fu-
ture behaviors of vehicles. Attainable Region is defined
as a region where a vehicle can attain in a few seconds.
It includes multiple possibilities of vehicle behaviors
which depend on prediction, and describes them as one
region at one frame and one vehicle. Since possibilities
of each vehicle’s behavior after some frames are pre-
dicted, interactions between vehicles can be efficiently
represented. With this concept, we can easily estimate
the interactions by checking whether the regions over-
lap each other. In order to estimate Attainable Re-
gion, prior knowledge is obtained by learning the scene
model. Our learning algorithm is based on clustering
of vehicles’ trajectories. We also employ observed in-
formation and combine it with the prior knowledge to
predict Attainable Region.

A driver support system which warns about the dan-
ger of approaching vehicles can be developed with At-
tainable Region. This approach can be combined with
a system that monitors driver’s attention [6]. The work
presented here is a step toward this direction.

Our framework is shown in Figure 1. In the observ-
ing step, vehicles in the scene are tracked at each frame.
In the learning step, trajectories of vehicles are clus-
tered with threshold and a representative trajectory of
each cluster is calculated. In the predicting step, fu-
ture behaviors of vehicles are estimated by integrating
learning results with observed information.
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2 Learning the Scene Model

In this section, we discuss prior knowledge of traf-
fic scenes and propose a model which learns behavior
patterns of vehicles. The prior knowledge describes
a general behavior of vehicles in traffic scenes. This
information can be obtained by learning time-series lo-
cation trails, called trajectories, of vehicles. Hu, et al.
[7] have presented an algorithm for learning trajecto-
ries using fuzzy K-means clustering. Each cluster has a
centroid which means a representative trajectory. The
system can detect anomaly in the scenes and predict
behaviors of vehicles by using these cluster centroids.
Thus, clustering trajectories is effective for modeling
and analyzing traffic scenes. We also adopt a cluster-
ing method of trajectories to model scenes and obtain
prior knowledge.

In our framework, input data in the learning step
is previously obtained in the observing step. This
observed information consists of time stamp, vehicle
location, velocity and instantaneous acceleration, di-
rection, and size. The information of vehicle i at
frame n is defined as 8-dimensional vector Oi =
(tn, xn, yn, vn, an, θn, width, height). tn is the time
stamp at frame n, xn and yn are the local coordinates
of vehicle i, vn is the velocity, an is the acceleration, θn

is the direction, and width and height are the size of
vehicle i. Trajectory vector Ti is, then, obtained from
observed vector Oi in the following definition:

Ti = {(xb, yb), (xb+1, yb+1), · · · , (xe, ye)} (1)

Here, b is the frame index at which the vehicle i entered
the scene, and e is the frame index at which the vehicle
i exited the scene.

For clustering trajectories, similarities between Ti

and Tj must be calculated. It is important to choose
distance function between two trajectories. The Eu-
clidean distance is widely used for measuring similarity
between two time-series data. However, it cannot be
applied to our problem because it can be used only if
two time-series are of equal length. More generalized
similarity measurements include Dynamic Time Warp-
ing (DTW), the Longest Common Subsequence (LCSS)
[8], Edit Distance on Real sequences (EDR) [9], and the
Sequence Weighted Alignment (Swale) [10]. Swale can
achieve greater accuracy than DTW, LCSS, and EDR.
Moreover, Morse, et al. [10] have presented the Fast
Time Series Evaluation (FTSE) method which can be
used for evaluating LCSS, EDR, and Swale quickly.
Therefore, we employ Swale as distance function for
clustering trajectories and FTSE as a speed-up algo-
rithm. Swale is defined as follows:

Swale(R, S)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n ∗ gap if m = 0
m ∗ gap if n = 0
rew + Swale(Rest(R), Rest(S)) if |r1 − s1| ≤ ε

max{gap + Swale(Rest(R),S),
gap + Swale(R, Rest(S))} otherwise

(2)

Here, R is time series {r1, · · · , rm} and S is time series
{s1, · · · , sn}, ri is the i-th element of R. Rest(R) is R
with the first element removed. rew is a match reward
and gap is a gap cost.

We, then, employ the group-average clustering [11].
This method enables effective clustering when there is
only similarity between vehicles and cluster centroids
cannot be calculated. All trajectories are clustered
with Swale hierarchically based on this method. A
medoid obtained in the learning step indicates a repre-
sentative trajectory in each cluster and is used in the
predicting step. The medoid of cluster c is defined as
follows:

mc = arg max
i∈Vc

Σ
j∈(Vc−{i})

Swale(Ti, Tj) (3)

We express the vehicle index which represents medoid
in cluster c as mc. Vc is a set of vehicles included in
cluster c. These medoids are the result of a learning
phase and used in the predicting phase.

3 Predicting Behavior of Vehicle

3.1 Determining Attainable Region

We propose a method for combining prior knowledge
with observed information to determine Attainable Re-
gion. In the predicting step, Attainable Region is de-
termined based on cluster medoids which are obtained
in the learning step and observed vectors described in
the previous section. Once a target vehicle is deter-
mined, a partial trajectory P of the vehicle from frame
b to frame curr is obtained in Equation (4).

P = {(xb, yb), (xb+1, yb+1), · · · , (xcurr, ycurr)} (4)

We define a current frame index at which prediction
begins as curr and a frame index which is curr minus
the minimum number of frames required for prediction
as b.

The partial trajectory P is, then, compared with all
cluster medoids. Only medoids whose similarity to P
exceeds a threshold are selected as candidates of future
trajectory. In the predicting step, the point is not dis-
similarity but similar segments between two sequences.
Figure 2 shows the reason why similar segments are im-
portant. When two sequences are compared, one is an
incomplete trajectory and the other is a complete tra-
jectory. If we employ Swale, dissimilar segments be-
tween two sequences gets gap cost and a value of Swale
becomes larger improperly. The number of similar seg-
ments between two sequences should be counted up.
LCSS is, therefore, a better choice than DTW, EDR,
and Swale. LCSS is defined in Equation (2).

LCSS(R, S)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if m = 0 or n = 0
LCSS(Rest(R), Rest(S)) + 1 if |r1 − s1| ≤ ε

max{LCSS(Rest(R),S),
LCSS(R, Rest(S))} otherwise

(5)

292



similar

dissimilar

dissimilar

medoids

partial
trajectory

Figure 2: Comparing a partial trajectory and medoids.

Algorithm 1 Build Rectangle List
Ensure: Rectangle List L

i ← curr;
j ← arg min dist(pi, cj);
move ← 0;
ε ← vcurrt + 1

2acurrt
2;

while proceed < ε do
move ← cj+1 − cj ;
pi+1 ← pi + move;
proceed ← proceed + move;
Obtain recti+1 from pi+1, width, height, and θn;
Insert recti+1 into L;
i ← i + 1;
j ← j + 1;

end while

An index set CP of the candidate trajectories is given
in Equation (6).

CP = {mc | LCSS(P ,Tmc) > threshold} (6)

Note that multiple candidate trajectories can be ob-
tained. They represent possibilities of vehicle behaviors
which depends on prediction. The candidate trajecto-
ries are used for determining future moving direction
of vehicles. Rectangle lists, which represent occupied
regions of vehicles at future frames, can be calculated
based on such trajectories. The technique used to ob-
tain a rectangle list of a vehicle is shown in Algorithm
1. P is the partial trajectory of the target vehicle, C
is the candidate trajectory, pi is the i-th element in-
cluded in P , cj is the j-th element included in C, curr
is the frame index at which the current element of the
target vehicle is, ε is a distance threshold, t is the time
interval for prediction, θn is the direction, and width
and height are the size of vehicle. In this algorithm,
dist(a, b) =

√
(bx − ax)2 + (by − ay)2. Attainable Re-

gion is defined as a set of rectangle lists along the can-
didate trajectories.

3.2 Data structure for Attainable Region

We introduce a three-layered data structure based
on R*-tree [12] to represent Attainable Region. R*-
tree is an efficient data structure for spatial indexing.
Figure 3 represents this data structure. In the first
layer, ROI is defined as a bounding box of Attainable

��� ��� �������������	
�����	

�	�������	�

����������	
�����	

�	�������	�

Figure 3: Three-layered data structure. Attainable Re-
gions of vehicle A and vehicle B are described. Dashed
line represents ROI. (a) is the first layer, (b) is the
second layer, and (c) is the third layer.

Region of each vehicle. Every ROI of vehicle is stored
as R*-tree. By checking overlaps between these ROIs,
two vehicles which may influence each other in the near
future can be estimated. In the second layer, ROI is
defined as a bounding box of each occupied region of
which Attainable Region is composed. A bounding box
of an occupied region of Attainable Regions in which
overlaps are detected is stored as ROI. By checking
these ROI, segments which may overlap each other be-
tween two Attainable Regions can be found. In the
third layer, two occupied regions whose bounding boxes
overlap each other in the second layer are stored. The
system checks overlaps between them.

This data structure enables to check overlaps be-
tween Attainable Regions quickly because unnecessary
comparisons are omitted.

4 Experimental Results

We present experimental results regarding the fea-
sibility of prediction based on Attainable Region. In
this experiment, we use the Next Generation Simula-
tion (NGSIM) [13] trajectory data sets. The data rep-
resents traffic flows on a segment of Lankershim Boule-
vard in the Universal City neighborhood of Los Ange-
les, California in 2005.

In the learning phase, we used the data set between
8:30 am and 8:45 am as observed information and tra-
jectories of 1210 vehicles were learned. In the predict-
ing phase, we used the data set between 8:45 am and
9:00 am as observed information. 100 vehicles were
selected arbitrarily as the target vehicles. In our ex-
periments, we express the time interval for prediction
as Δt. The prediction result was compared with the
situation after a few seconds from the current frame.
This time stamp is expressed as tf .

An area ratio of the actual occupied region in pre-
dicted Attainable Region is an important factor. If
whole of the actual occupied region of the vehicle is
included in the computed Attainable Region, the area
ratio is 1. Furthermore, in order to focus on the possi-
bility that an accurate Attainable Region is estimated
by prediction, we define recall as a fraction of the num-
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Figure 4: Bird’s-eye view in the scene. Rectangles in-
dicate vehicles and the number described around each
vehicle indicates a vehicle index. The left figure repre-
sents a traffic situation at frame 696. The right figure
means an image overlapped with Attainable Region.

Table 1: The average area ratio and recall.
Δt(sec) tf (sec) Average area ratio Recall

2 1 0.795 0.79
3 2 0.683 0.68
4 3 0.613 0.59
5 4 0.551 0.54

ber of accurate Attainable Region NR in the number of
actual occupied regions after time interval for predic-
tion NC . We estimated that the prediction is accurate
if the area ratio was greater than 0.7.

A successful example of experimental results is
shown in Figure 4. In this case, Δt was 3 seconds, and
tf was 2 seconds. The area ratio was 0.94. Our ap-
proach achieved sufficient accuracy and the computed
Attainable Region enabled estimating the future be-
havior of the vehicle accurately.

Next, we show the prediction performance of 100
arbitrary vehicles in some tuples of Δt and tf . The av-
erage area ratio and recall are shown in Table 1. Our
approach had the best performance when Δt was 2 and
tf was 1. Most of the Attainable Regions of vehicles
were successfully estimated in this case. In case that
Δt was 5 and tf was 4, both the area ratio and recall
was worse than those in case that Δt was 2 and tf was
1. The reason is that it is difficult to predict correct
behavior when the time interval for prediction is long.
The shorter the value of time interval for prediction was
set to be, the greater the area ratio and recall became.
Especially, there were some cases that the area ratio
was estimated to be 0. The number of these cases was
higher than the number of the cases of 0.1, 0.2, and so
on. Since the case of 0 means complete failure, we must
consider what caused it. One of the reasons for predic-
tion failure is that our approach does not consider the
behavior of “stop”. Another reason is that similarity
between partial trajectory and candidate trajectories
was not appropriately calculated. We must address
these problems and improve our approach.

5 Conclusion

In this paper, we have proposed the concept of At-
tainable Region to predict future behaviors of vehicles.
Furthermore, we have proposed a three-layered data
structure based on R*-tree to represent Attainable Re-
gion. Our approach is efficient to estimate interactions
between vehicles. Experimental results have shown the
feasibility of prediction with Attainable Region.

In our future work, we apply Attainable Region to
various moving objects such as pedestrians, bicycles,
and motorbikes. Although reduction of a computa-
tional cost is not addressed in this paper, we must ad-
dress it and keep the cost to a minimum. In addition,
we should improve accuracy and effectiveness for pre-
diction and estimating interactions between objects.
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