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Abstract

The present paper describes a recognition method of
pulmonary nodules in thoracic CT scans by use of 3-
D spherical and cylindrical models that represent nod-
ules (i.e. possible cancers) and blood vessels, respec-
tively. The anatomical validity of these object models
and their fidelity to CT scans are evaluated based on
the Bayes theorem. The nodule recognition is employed
by the maximum a posteriori estimation. The proposed
method is applied to actual CT scans, and experimental
results are shown.

1 Introduction

Lung cancer is the most common cause of death
among all cancers worldwide. To cope with this se-
rious problem, mass screening for lung cancer has been
widely performed by simple X-ray films with sputum
cytological tests. However, it is known that the accu-
racy of this method is not sufficient for early detection
of lung cancer. Therefore, a lung cancer screening sys-
tem by CT for mass screening is proposed. This system
improves the accuracy of the cancer detection consid-
erably, but has one problem that the number of the
images is increased to over dozens of slice sections per
patient from 1 X-ray film. It is difficult for a radiologist
(i.e. a medical doctor who specializes in reading radio-
graphs) to interpret all the images in a limited time.
In order to make the system more practical, it is nec-
essary to develop a computer-aided diagnosis (CAD)
system that automatically detects pathologic candidate
regions suspected to comprise pulmonary nodules, and
informs a radiologist of their positions in CT scans as
a second opinion.

In the present paper, we propose a novel recognition
method of pulmonary nodules in thoracic CT scans by
use of 3-D deformable spherical and cylindrical models
that represent nodules and blood vessels, respectively.
The anatomical validity of the object models are evalu-
ated by the probability distributions of the parameters
of the object models. The probability distribution are
predefined considering the anatomy. The fidelity of
the object models to CT scans are also evaluated by
use of the differences in intensity distribution between
the CT scans and template images that are produced
from the object models by a computer graphics tech-
nique. Through these evaluations, the posteriori prob-
abilities of hypotheses that the object models appear
in a CT scan are calculated on the basis of the Bayes
theorem. From the most likely object model obtained
by the MAP estimation, it is determined whether or
not the CT scan is pathological.

2 3-D Deformable Object Models

2.1 Nodule

A nodule is represented by a spherical model as
shown in Fig.1(a). The center position, radius and
X-ray attenuation of a nodule model are denoted by
xN = (xN , yN , zN), rN and αNm, respectively. The
X-ray attenuation of an area surrounding the nodule
model (such an area is often called an air area) is de-
noted by αNa .

In medical diagnosis, the size of a nodule is the most
important indicator to determine the stage of disease.
Therefore, the radius rN is more essential to describe a
nodule than the other parameters xN , αNm and αNa . In
the present paper, the former (i.e. rN ) and latter are
called essential and auxiliary parameters, respectively.
A nodule model is denoted by oN (rN ; xN , αNm, α

N
a ),

where the essential parameter is placed on the left-
hand side of the semicolon. The probability density
value of a hypothesis that a nodule model appears in
a volume of interest (VOI) is defined by

p
(
oN (rN ; xN , αNm, α

N
a )

)
= PN · g(rN ;μNr , σ

N
r ), (1)

where PN is the appearance probability of the set of
all possible nodules, and g(x;μx, σx) is a Gaussian dis-
tribution with a mean μx and standard deviation σx.

(a) Nodule

2

1

(b) Curved
blood vessel
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2 3
(c) Bifurcated
blood vessel

Figure 1: 3-D Object models.

2.2 Curved blood vessel

A curved section in a blood vessel tree is repre-
sented by two-connected-cylinder models as shown in
Fig.1(b). The first cylinder corresponds to a parent
vessel (indicated by ’1’), which is nearer to a heart in
respect of its blood flow, and the second its child ves-
sel (’2’). The i-th cylinder (i = 1, 2) is represented
by the radius rBc

i , zenith and azimuth angles, θBc

i and
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φBc

i . The connecting point of the two cylinders is rep-
resented by xBc = (xBc , yBc , zBc). The X-ray atten-
uation of the model and its surrounding area are rep-
resented by αBc

m and αBc
a , respectively. From these

parameters, two additional parameters are calculated:
the difference in section area between the cylinders δBc

and the angle between the two cylinders ψBc . Be-
cause the parameters rB1 , δBc and ψBc are thought
to be more essential, a curved blood vessel model is
denoted by oBc(rB1 , δ

Bc , ψBc ; xBc , rBc
2 , θBc

1 , φBc
1 , θBc

2 ,

φBc
2 , αBc

m , αBc
a ).

The probability density value of appearance of a
curved blood vessel model oBc(rB1 , δ

Bc , ψBc ; · · ·) is de-
fined by

p
(
oBc(rB1 , δ

Bc , ψBc ; · · ·))
= PBc · g(rB1 ;μBr1(x

Bc), σBc
r1 ) ·

g(δBc ;μBc

δ , σBc

δ ) · g(ψBc ;μBc

ψ , σBc

ψ ), (2)

where PBc is the appearance probability of the set of
all possible curved sections in blood vessel trees. The
mean radius of a blood vessel μBr1(x

Bc) is defined as
being the function of its position xBc so as to represent
the relationship between the radius and position in a
lung region.

2.3 Bifurcated blood vessel

A bifurcation in a blood vessel tree is represented by
three-connected-cylinder models as shown in Fig.1(c).

The probability density of appearance of a bifur-
cated blood vessel model oBb(rBb

1 , δBb
23 , δ

Bb
123, ψ

Bb
12 , ψ

Bb
13 ,

ψBb
23 ; · · ·) is defined in the same manner as a curved

blood vessel as follows:

p
(
oBb(rBb

1 , δBb
23 , δ

Bb
123, ψ

Bb
12 , ψ

Bb
13 , ψ

Bb
23 ; · · ·)

)
= PBb · g(rBb

1 ;μBr1(x
Bb), σBb

r1 ) ·
g(δBb

23 ;μBb

δ23, σ
Bb

δ23) · g(δBb
123;μ

Bb

δ123, σ
Bb

δ123) ·
g(ψBb

12 ;μBb

ψ12, σ
Bb

ψ12) · g(ψBb
13 ;μBb

ψ13, σ
Bb

ψ13) ·
g(ψBb

23 ;μBb

ψ23, σ
Bb

ψ23), (3)

where PBb is the appearance probability of the set of
all possible bifurcations in blood vessel trees, δBb

23 is
the difference in section area between the two child
cylinders, δBb

123 is the difference in section area be-
tween the parent and child cylinders, that is δBb

123 =
π
(
(rBb

1 )2 − (rBb
2 )2 − (rBb

3 )2
)
, and ψBb

ij is the angle be-
tween the i-th and j-th cylinder (i, j = 1, 2, 3, i �= j).

The appearance probabilities PN , PBc and PBb sat-
isfy the following equation:∑

τ∈{N,Bc,Bb}
P τ = 1, (4)

where τ represents the class of an object model.

3 Modification of probability distribu-
tion of 3-D object models possessing
different parameter spaces

The object models have the different essential pa-
rameters in number and type. For example, the nod-
ule model has only one essential parameter rN , whereas

the bifurcated blood vessel model has six other essen-
tial parameters rBb

1 , δBb
23 , δBb

123, ψ
Bb
12 , ψBb

13 and ψBb
23 . The

differences in number cause a problem that generally,
the probabilities of the object models that have more
essential parameters are relatively underestimated.

Let us consider an example case where all the stan-
dard deviations are 1 and all the set appearance prob-
abilities are 1/3. The probability of the nodule model
whose rN is μ+3, and that of the bifurcated blood ves-
sel model whose essential parameters are μ’s are calcu-
lated as follows:

p(oN ) = 1/3 · g(μ+ 3;μ, 1) ≈ 0.00148, (5)

p(oBb) = 1/3 · (g(μ ;μ, 1)
)6 ≈ 0.00134. (6)

Although the bifurcated blood vessel model has much
more likely parameters, its probability is smaller than
that of the nodule model.

Here, let us give a more generalized expression to
the model probabilities as follows:

p (oτ (ωτ )) = P τ · p(ωτ ), (7)

where oτ (ωτ ) represents an object model that has an
essential parameter vector:

ωτ =
(
ωτ1 ∈ Ωτ1 , ω

τ
2 ∈ Ωτ2 , · · ·

ωτd ∈ Ωτd , · · · , ωτDτ ∈ ΩτDτ

)
∈ Ωτ . (8)

Ωτ is the parameter space, and Dτ is its dimension.
For example, rBc

1 , δBc and ψBc in Eq.(2) correspond to
ωBc

1 , ωBc
2 and ωBc

3 , respectively, and the dimensionDBc

is 3. In Eq.(7), the auxiliary parameters are omitted
for simplicity. The differences in the dimension Dτ

between the model classes τ cause underestimation in
p(ωτ ).

K

K

Ωτ

ΔΩτ
1

Ω τ
1

( k  )1
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τ (  ,n)ΔΔΩΔΔΩ
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M
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ΔΩτ
2( k  )2

Ω τ
2

Figure 2: Division of a
parameter space.

One solution to correct
the underestimation is to
use the geometric average
of the parameter proba-
bility: Dτ

√
p (ωτ ), that is

adopted in, for example,
recognition of language [1]
and speech [2]. Because
the dimension Dτ is nor-
malized, the underestima-
tion is no longer caused.
However, the geometri-
cally averaged probabil-
ity causes another prob-
lem that generally, the in-
tegral of its distribution
over the parameter space

is not one :
∫
ω∈Ωτ

Dτ
√
p (ω) dω �= 1. We desire a

probability distribution that does not cause underesti-
mation and that integrates to one. In this paper, we
realize the desired probability distribution on a param-
eter space that is inhomogeneously divided so that the
desired distribution may approximate to its geometri-
cally averaged distribution.

First, each Ωτd is divided into K isometric intervals
ΔΩτd(k) (k = 1, 2, ...,K) as shown in Fig.2. The inter-
val size |ΔΩτd(k)| is equivalent to |Ωτ

d |
K . By combining
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ΔΩτd(k), the following subspaces are generated:

ΔΩτ (l) = ΔΩτ1(k1)×ΔΩτ2(k2)× · · · ×ΔΩτDτ (kDτ ),
(9)

where l = 1, 2, · · · ,KDτ

. The operator A× B yields a
product space of A and B. If K is enough large, then
the probability distribution p(ω) can be regarded as
being constant in ΔΩτ (l). Let pτ (l) denote its con-
stant value in ΔΩτ (l). The probability of ΔΩτ (l) is
calculated as

P (ΔΩτ (l)) =
∫
ΔΩτ

(l)

p (ω) dω ≈ pτ (l) · |ΔΩτ (l)|.

(10)

Then, two types of further division are made for
each subspace ΔΩτ (l). One is the division into
M τ (l) isometric subsubspaces ΔΔΩτ

M (l,m) (m =
1, 2, · · · ,M τ (l)) , and the other is the division
into N isometric subsubspaces ΔΔΩτ

N (l, n) (n =
1, 2, · · · , N) as shown in Fig.2. The subsubspace
sizes |ΔΔΩτ

M (l,m)| and |ΔΔΩτ
N (l, n)| are equivalent

to |ΔΩτ
(l)|

Mτ (l) and |ΔΩτ
(l)|

N , respectively. The division
number N is constant, whereas M τ (l) varies with τ
and l. Therefore, the parameter space composed of
ΔΔΩτ

M (l,m) is inhomogeneous. On the inhomoge-
neously divided parameter space, the desired probabil-
ity distribution is defined as follows:

P (ΔΔΩτ
M (l,m)) =

P (ΔΩτ (l))
M τ (l)

≈ pτ (l) · |ΔΩτ (l)|
M τ (l)

=
pτ (l) · |Ωτ |
M τ (l) ·KDτ . (11)

On the other hand, on the parameter space composed
of ΔΔΩτ

N (l, n), the geometrically averaged probability
distribution is defined as follows:

Q (ΔΔΩτ
N (l, n)) =

Dτ
√
P (ΔΩτ (l))
N

≈ 1
N
· Dτ

√
pτ (l) · |ΔΩτ (l)|

=
1
N
· Dτ

√
pτ (l) · |Ω

τ |
KDτ =

Dτ
√
pτ (l) · |Ωτ |
N ·K . (12)

Because the dimension Dτ is normalized in Dτ
√
pτ (l)

and Dτ
√|Ωτ |, the underestimation is not caused in

Q (ΔΔΩτ
N (l, n)).

By setting M as follows:

M τ (l) =

⌊
N

(
pτ (l) · |Ωτ |

KDτ

)1− 1
Dτ

⌋
(13)

with an enough large number N , P (ΔΔΩτ
M (l,m)) ap-

proximates to Q (ΔΔΩτ
N (l, n)). In Eq.(13), �x� is the

nearest integer value of x. Consequently, we obtain the
probability distribution that suppresses the underesti-
mation and integrates to approximately one.

Let Oτ (ΔΔΩτ
M (l,m)) denote a set of the object

models as follows:

Oτ (ΔΔΩτ
M (l,m)) = {oτ (ωτ )|ωτ ∈ΔΔΩτ

M (l,m)} .
(14)

The following probability distribution of the object
model set:

P (Oτ (ΔΔΩτ
M (l,m)) = P τ · P (ΔΔΩτ

M (l,m)) (15)

is used instead of p (oτ (ωτ )) as a priori probability dis-
tribution in the Bayes formula.

4 Observation model

The Bayes formula also uses a likelihood function,
that evaluates the fidelity of the object model to a CT
VOI and is defined as the conditional probability of
the CT VOI given the object model. To evaluate the
fidelity, a template VOI is produced from the object
model by simulating the CT imaging process where
nodules and blood vessels are observed as regions with
particular shapes on CT slice sections. The conditional
probability is formulated by use of similarity between
the CT VOI and the template VOI.

4.1 Production of templates from 3-D ob-
ject models

Let vT (x, y, z; oτ (ωτ )) denote a voxel value at x, y, z
in a template VOI. The value is calculated as

vT (x, y, z; oτ (ωτ )) = ατm · ςτm + ατa · (ςv − ςτm), (16)

where ατm and ατa are the X-ray attenuation of the ob-
ject model and that of its surrounding area, respec-
tively. ςv and ςτm are the volume of the whole voxel
and that of a part where the object model intersects
with the voxel, respectively.

4.2 Likelihood of VOIs to 3-D object mod-
els

The fidelity of the object model to a CT VOI is eval-
uated by the following correlation coefficient between
the CT VOI and the template VOI:

γ(vC , vT )

=

∑
x,y,z

(
vC(x, y, z)− v̄C

)(
vT (x, y, z)− v̄T

)
√∑
x,y,z

(
vC(x, y, z)− v̄C

)2
√∑
x,y,z

(
vT (x, y, z)− v̄T

)2
,

(17)

where vC(x, y, z) is the voxel value at x, y, z in the CT
VOI. v̄C and v̄T are the mean voxel values of the CT
VOI and template VOI, respectively.

The correlation coefficient γ(vC , vT ) takes a value
between 1 and −1. The higher the fidelity is, the larger
the correlation coefficient is. The likelihood is defined
as

p (vC |oτ (ωτ )) =
γ(vC , vT ) + 1

2
. (18)

5 Recognition of nodules based on the
MAP estimation

Given a CT VOI vC , the posteriori probability of the
hypothesis that an object model set Oτ (ΔΔΩτ

M (l,m))
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appears in the VOI is given by

P (Oτ (ΔΔΩτ
M (l,m)|vC)

=
∫
ΔΔΩτ

M (l,m)

p (oτ (ω)|vC) dω

=
∫
ΔΔΩτ

M (l,m)

β · p (vC |oτ (ω)) p (oτ (ω)) dω, (19)

where β = [p(vC)]−1. In Eq.(19), the Bayes formula:

p (oτ (ω)|vC) = β · p (vC |oτ (ω)) p (oτ (ω)) (20)

is used. Since the size of ΔΔΩτ
M (l,m) is small, the

likelihood function p(vC |oτ (ω)) can be regarded as be-
ing constant in ΔΔΩτ

M (l,m). Thus,

the last term in Eq.(19)

≈ β · p(vC |oτ (ω̌τ ))
∫
ΔΔΩτ

M (l,n)

p (oτ (ω)) dω

= β · p(vC |oτ (ω̌τ ))P (Oτ (ΔΔΩτ
M (l,m)) , (21)

where ω̌τ is a certain essential parameter in
ΔΔΩτ

M (l,m). The likelihood p(vC |oτ (ω̌τ )) and the
priori probability P (Oτ (ΔΔΩτ

M (l,m)) are obtained
from Eqs.(18) and (15), respectively.

For each class τ = {N,Bc, Bb}, the optimal essential
parameter vector that maximizes the posteriori proba-
bility is obtained by the Powell method as follows:

(lτ∗,mτ∗) = argmax
l,m

P (Oτ (ΔΔΩτ
M (l,m))|vC) . (22)

From the following ratio between the posteriori proba-
bilities:

ρ(vC) =
P

(
ON (ΔΔΩN

M (lN∗,mN∗))|vC
)

max
τ �=N

P (Oτ (ΔΔΩτ
M (lτ∗,mτ∗))|vC)

, (23)

the CT VOI vC is determined to be pathological if
ρ(vC) ≥ Tρ and to be normal if ρ(vC) < Tρ with a
certain threshold Tρ.

6 Experimental results

TPR
100%

         #FP
92.8/case

Figure 3: The fROC
curve of the proposed
method.

In this experiment, 26
thoracic CT scans are
used with 30 actual pul-
monary nodules. One
slice cross section con-
tains 512 × 512 pixels.
From the CT scans, lung
regions are extracted by
a threshold-based tech-
nique [3], and then nodule
candidates are detected
by methods [4]. The num-
ber of nodule candidates
is 93.8 per scan. They
are composed of 28 ac-
tual nodules (two false
negatives occurs) and 92.8
false positives per scan.
By applying the method proposed in this paper to the
nodule candidates with Tρ = 0.954 that is determined

experimentally, the number of the false positives is suc-
cessfully decreased to 21.2 per case without generating
additional false negatives. The appearance probabili-
ties PN , PBc and PBb are set uniformly. Fig.3 show a
fROC curve of the proposed method.

The false positive number obtained by our previous
methods, such as [5], that use the ordinary joint prob-
ability is 61.2 at the true positive rate of 100%. The
proposed method is more accurate than our previous
methods.

Fig.4 shows a sample CT scan with a nodule that
is identified by a radiologist and is also detected by
the detection methods as a nodule candidate. Its di-
ameter is about 4.5mm. The posteriori probabilities
of the most likely object models oN , oBc and oBb are
0.114, 0.100 and 0.100, respectively (the common con-
stant values are omitted), and the ratio of the posteri-
ori probabilities ρ is 1.14. Because the ratio is larger
than the threshold Tρ, the nodule candidate is correctly
determined to be a nodule. The calculation time per
candidate is approximately 40 second.

7 Conclusion

Figure 4: A sample tho-
racic CT scan. The arrow
indicates a nodule that is
identified by a radiologist.

The present paper
described a novel
recognition method
of pulmonary nodules
in thoracic CT scans
using 3-D deformable
object models of dif-
ferent classes. The
anatomical validity of
these object models
and their fidelity to
CT scans were eval-
uated based on the
Bayes inference. The
nodule recognition
was employed by the
maximum a posteri-
ori estimation. The
experimental results
were shown.
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