
Segmentation of Femoral Head from CT after Femoral Neck
Fracture
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Abstract

We present a semi-automatic method for femoral head
segmentation from CT dataset based on finding an opti-
mal path through a polar transformation of perpendicu-
lar slices. The cost function is a combination of corti-
callis properties (the directional behavior of 3D gradients
and their magnitude in 2D slices, where they form typical
”channels”). The volume is computed using filling and
morphological operations. Since no explicit information
about the shape of the femoral head is used, the method
is also suitable for many types of fractures or damaged
femoral heads.
The implementation was experimentally validated on the
Radiology Department of University Hospital Bulovka in
Prague and allows radiologists to intuitively and accurately
estimate the femoral head density in approximately 1 to 3
minutes.

1 Introduction

A precise segmentation of a femoral head is needed for

a trabecular bone density estimation. Such estimations (in

[1]) can be used both in the sense of post-injury analysis

and treatment and also as a means of prevention of femoral

neck accidents.

We present a novel approach using several existing meth-

ods to semi-automatically segment the trabecular bone of

the femoral head even in the case of broken femoral neck or

dislocated femur.

Here is a short overwiew of existing approaches:

Atlas based segmentation merges image segmentation

with image registration [2, 3]. However, it is not good for

segmenting dislocated hip joints or femoral heads with frac-

tured necks.

A region growing approach in [4] is a very good ap-

proach for segmenting whole skeletal structures, but sep-

arating individual bones (for ex. pelvis and femoral head)

may be problematic.

Segmenting using dynamic programming has been al-

ready tried in [5], although in a slightly different approach

than our algorithm. Also the paper discusses only one slice

segmentation and not the whole volume.

Figure 1: Example of a femoral neck fracture on

CT and a postoperative CR of internal osteosyn-

thesis.

Deformable models [6, 7] may be used for this type of

segmentation, especially after we have some sort of corti-

callis enhancing preprocessing. Deformable models were

an option we considered, should the shortest path search al-

gorithm not work.

We give a short overview of our method in Section 2,

present preprocessing in Section 3, segmentation in Section

4 and postprocessing in Section 5. Sections 6 and 7 present

our results and conclude this paper.

2 Method overview

Our algorithm strives for a simple solution, both from

the implementation and theoretical point of view. More-

over, we require our method to find the corticallis of the

femoral head knowing only that it has a shape of a deformed

sphere and that it is locally more dense than its close sur-

roundings. First, we preprocess the dataset to remove noise

and enhance the corticallis with our custom cost function.

Next, we segment this enhanced dataset using a shortest

path search in polar coordinates and obtain a volume of the

femoral head. Finally, we postprocess this volume using

morphological operations and then we may perform for ex-

ample trabecular bone quality analysis on it.

3 Preprocessing

Corticallis of older patients (our target group) is usually

damaged, it may be sparser and exhibit weaker edges than
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the trabecular bone. When we tried basic preprocessing

techniques (such as thresholding and simple edge detection)

they proved insufficient for corticallis detection.

To obtain good resolution for segmenting the femoral

head, our input CT scans are obtained with very small col-

limation (0.6mm – 0.8mm) and a soft kernel (B10). Such

collimation introduces high levels of noise. For its removal

it is usually enough to apply a Gaussian lowpass filter with

a kernel of size 53. This removes most of the noise and at

the same time does not modify the visibility of corticallis

very much.

3.1 Corticallis enhancement functions

First we compute the directional corticallis enhancement
functions cX , cY , cZ , which utilizes our model of how the

corticallis should look in a 1D cut. Detected corticallis in

given direction is represented by locally higher values.

A complete corticallis enhancement function

c(x, y, z) is computed by taking the maximum of

cX(x, y, z), cY (x, y, z), cZ(x, y, z) for each point (x, y, z).
The corticallis is represented by locally higher values.

A function d(x, y, z) is a clamped and lowpass filtered

linear transformation of c(x, y, z). The final cost function

e(x, y, z) suitable for graph search algorithms is a clamped

linear combination of function d(x, y, z) and the magnitude

of the 3D gradient vector.

Here we will give an example for computation in the X
axis and how to compute an enhancing function cX(x, y, z)
in this direction. Let’s denote the original Gauss-filtered

data f(x, y, z) and its gradient ∇f(x, y, z). For each point

we look in both directions along the axis and look at the

two closest neighboring gradients gL1, gL2, gR1, gR2 and

choose the one with larger magnitude.

gL1 = ∇f(x − 1, y, z)
gL2 = ∇f(x − 2, y, z)

gL =
{

gL1, |gL1| > |gL2|
gL2, |gL1| ≤ |gL2|

Computation of gR1, gR2 and gR is similar, only with

indices +1 and +2.

Next, we compute an angle between each of those two

gradient vectors and a vector pointing from the position

where the gradient was taken to the point (x,y,z). We get

angles αL, αR. A graphical representation of these angles

can be seen in Figure 2.

cos(αL) =

〈
gL,

⎡
⎣ x

y
z

⎤
⎦ − pos(gL)

〉

If any of these two angles αL, αR is greater than or equal

to 90◦ (cos(αi) ≤ 0) then the point (x, y, z) is probably

not the local maximum in the X direction and thus we do

not compute further and finalize the directional corticallis
enhancing function as cX(x, y, z) = 0.

If the two angles are less than 90◦, compute the final

value of cX(x, y, z) by multiplying the magnitudes of the

gradients (gL and gR) with a negative cosine of their angles

Figure 2: A graphical representation of angles αL

and αR. The brighter path in the middle of this

image represents magnified corticallis.

(the more opposite they are, the bigger the function value

is).

βg = acos

( 〈gL, gR〉
|gL| · |gR|

)
cX(x, y, z) = −cos(βg) · |gL| · |gR|

For cY and cZ the only difference is that we take the

neighbor gradients not along the X axis, but along the Y
and Z axis, respectively. The final corticallis enhancing
function is computed as a maximum of these three func-

tions.

c(x, y, z) = max(cX(x, y, z), cY (x, y, z), cZ(x, y, z))

Searching 2 neighbor voxels is good for data with voxel

dimensions around 0.5-0.8mm. One voxel is not enough, 3

voxels would already reach to the pelvic bone acetabulum

in some places.

In the end our corticallis enhancement method proved

to be quite good in localizing corticallis, while suppressing

most of the other structures and trabecular bone. Of course,

noise may bring local peaks of the cost function, but in the

overall view these peaks are mostly solitary (and after the

Gaussian filter also quite small) and insignificant in the seg-

mentation step where some global localization of connected

paths is applied.

3.2 Final cost function

Other information that we would like to add is the gradi-

ent magnitude, which creates channels, or paths with very

small values on the ridge of corticallis and larger values

around. Also very high peaks are found on the borders of

very dense bones, such as the pelvis.

The drawback of gradient magnitude is that it also en-

hances the trabecular bone and is often confused by noise.

So we would like to utilize the information from both our

corticallis enhancement method and the gradient magnitude

to increase robustness.

The corticallis enhancement method is able to pinpoint

the corticallis, while gradient magnitude makes accidental

confusion of the pelvis for the femoral head less probable.

The gradient magnitude does not spoil the cost function on

places where the actual femoral corticallis is, but adds other

penalties around, so that we can stick to it during segmen-

tation.

The actual cost function adjustment is as follows. First

we clamp the values to remove peaks. Next, the function
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Figure 3: Cost function construction (from top

left to bottom right): (a) Original data. (b)

Gauss-filtered original data. (c) Gradient size ap-

proximation. (d) Corticallis enhancing function

c(x, y, z). (e) Function d(x, y, z). (f) Final cost

function e(x, y, z).

is filtered with a Gaussian filter, kernel size 53. The raw

function c(x, y, z) has mostly a form of curves and surfaces

about 2-4 voxels vide (see Figure 3 (d) and (e)) and smooth-

ing helps the optimal path search algorithm to find its axis.

Let’s denote this result a modified cost function d(x, y, z).

d(x, y, z) = GaussLP (Clamp(c(x, y, z))

The final function e(x, y, z) is computed by subtracting

d(x, y, z) from the gradient magnitude. We have to make

sure that it is non-negative everywhere (for the sake of a

correct graph-search algorithm, more in Section 4.2). The

clamping prevents the occurence of few solitary peaks that

would attract the graph-search algorithm. A step-by-step

example of cost function construction is in Figure 3.

e(x, y, z) = Clamp(A · |∇f(x, y, z)| −B · d(x, y, z)+C)

More precise derivation is given in [8].

4 Segmentation

[9] presents a method for segmenting in polar coordi-

nates, which inspired our approach. The advantage of us-

ing polar coordinates for spherical and cylindrical objects is

that even in places where there is no relevant information

for segmentation, the algorithm has a tendency to go along

the shortest path (in polar coordinates along a line, in spatial

coordinates along a circle) until it hits another defined path.

We need to find several input parameters: the upper and

lower extremes where to begin and end segmentation and

the center of polar transformation in each slice. For our

case we also need a starting point for segmentation and con-

trol points that add additional shape information to the al-

gorithm.

The minimal input from a user is the center of the

femoral head and at least one control point lying on the cor-

ticallis. Additional control points can be added in places

with unclear corticallis. The 3D segmentation is done on a

2D slice-by-slice basis. A set of primary segmentations is

performed from these user defined control points (see Sec-

tion 4.2 for detailed description) only on those slices where

user defined at least one control point. We get additional

control points for secondary segmentations in perpendicu-

lar slices from these segmented contours of corticallis in the

few primary slices. Slice selection is described in Section

4.1. The whole volume is created from floodfilling each

successfuly segmented axial slice.

4.1 Slice selection

Only one control slice is insufficient for real world CT

scans. The most of the friction happens in the proximal pos-

terior (or upper rear) part of the femoral head, the articular

cartilage is thinned and the density of corticallis is reduced,

so that it is barely visible in the CT scan. The pelvis is much

denser than the corticallis and confuses the algorithm.

The most unclear slice is the sagittal cut. Here we can

add most of the required information in one or a few slices.

So increased effort in segmenting this slice gives us an ad-

vantage in segmenting the other slices, because it generates

seeds in the most difficult part of the femoral head. More

control slices should help to overcome a larger unclear area.

After the sagittal cuts are segmented, one slice in the

frontal plane brings spatial coherency to the final axial seg-

mentation. This frontal plane can be corrected by the user

as well.

Now the final segmentation in axial planes starts. It finds

the extremes from the sagittal control cuts and performs

segmentation in each slice in between. This part usually

runs completely automatically. In case any of the slices are

too unclear, the axial slices can be corrected as well. But

here we usually do not encounter any problems, only a very

small number of slices goes wrong (they are usually near

the extremal positions along the up/down direction), larger

errors should be corrected by adding another control sagittal

slice.

4.2 Graph search algorithm

Our input in each slice is a set of one or more control

points and the CT slice data. Output should be a set of

voxels that define the border of the femoral head, or more

precisely, the corticallis. As mentioned before, we use a

polar transformation in each slice to simplify the data walk-

through (see Figure 4).

The path along the corticallis consists of low values and

is almost continuous, but may be broken in some places and

some segments may be missing completely. Additionally,

we have a set of control points that we want to hit in a spe-

cific order (this order is given by their respective positions

along the u coordinate).

We have used Dijkstra’s shortest path graph search al-

gorithm [10] for this problem. We define the weighted di-

rected graph for this algorithm as follows: vertices V are

the pixels in the polar cut image. Edges E lead from each

pixel to its right neighbor, upper right neighbor and lower

right neighbor if they exist. For vertices at the horizontal

end, the right neighbors are defined as vertices created from

pixels at the beginning of horizontal coordinates (with co-

ordinate u = 0). The weight of each edge is defined as the
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Figure 4: Polar transformation of the cost func-

tion e(x, y, z) from Figure 3.

original pixel value of the vertex the edge is pointing to.

Let’s consider k control points C0, . . . , Ck−1 sorted by

their u coordinate. We want to find a path between each

two consecutive control points in this image (the last con-

trol point has the first control point as its consecutive neigh-

bor). So we define the graph as mentioned above and run the

shortest path search algorithm for each pair Ci, C(i+1)mod k

where i ∈ [0, k − 1].
The set of voxels obtained by backward transformation

from polar to spatial coordinates define the femoral head

corticallis.

4.3 User-defined cutting plane

Three user-defined control points in the CT dataset de-

fine the boundary between femoral head and femoral neck.

This plane defines the end of femoral head and prevents

from including unwanted data from the fracture. It is used

as a location for creating an artificial corticallis for leading

the segmentation algorithm through the femoral neck. This

is done by creating a volume where voxels close to the plane

are 0.0 and everywhere else 1.0. Next step is Gaussian fil-

tering and multiplication with the original data.

5 Postprocessing

When the corticallis is correctly segmented as a border-

line in each axial slice, the whole volume is obtained by

running a 2D floodfill algorithm in each axial slice with a

seed in the middle of the original polar computation. This

way we get the whole volume including the corticallis.

If we want only the trabecular bone for density estima-

tion, we need the radiologist to estimate the thickness of the

corticallis and for each cortical voxel perform an erosion.

Usually 2-3 voxels are enough.

6 Results

Our testing dataset consisted of 30 patients. The correct

segmentation standard was set by defining a cutting plane

and then adding control points until the user was satisfied

Figure 5: (a) Sagittal (primary) and (b) frontal

(secondary) slices after segmentation, yellow

cross shows user-defined control point, yellow

line is user defined cutting plane.

that the segmentation quality was as good as manual seg-

mentation. Next the measurement was done by using the

same cutting plane and trying as few control points as pos-

sible to reach a correct segmentation, which we have set as

error volume within 5% of the precise volume.

For a correct segmentation 35% of the patients needed

3 or less control points (for example only one in Figure 5),

45% needed 4-10 points, 14% needed 11-20 points and for

6% needed more than 20 points. Only 1 patient was not

correctly segmented (included between those that needed

more than 20 control points), but the trabecular bone qual-

ity analysis error was insignificant (for this purpose was the

project originally targeted). This is a good result consider-

ing that most of the patients were mostly of higher age and

the femoral head corticallis is either very weak compared to

the pelvic corticallis or those two bones almost touched.

We tried how fast a user can learn to do precise segmen-

tation: for a radiologist it was enough to demonstrate one

segmentation and let him perform the second one, guiding

him by providing information about the algorithm and pos-

sible problems. The third segmentation was already correct

without a guide.

We have performed a number of tests with one dataset

segmentation on a quad core Intel Q6600 computer. The

algorithm is parallelized for multiple threads. The times

proved to get advantage of multithread processing with a

roughly linear acceleration from each additional thread up

to about 5 threads. The times for a complete segmentation

are from 3.5 to 18 seconds depending on the configuration

and number of threads, time for preprocessing is about 1.9

seconds.

7 Conclusion

We have presented a novel approach based on a combi-

nation of several existing methods with some advancements

in preprocessing. It is much easier than many existing algo-

rithms, both in the sense of actual program implementation

and debugging (much easier than for example various de-

formable models algorithms) or in the sense of the first-time

data preparation (compared to registration and atlas-based

segmentations).

Most existing algorithms use only the gradient and its

magnitude as a preprocessing step for a segmentation,

which is not applicable for CT images of elderly patients
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with damaged articular cartilage (our target group). Our

preprocessing and the possibility to correct the segmenta-

tion performs much better with such data. Also no previous

estimation of bone positions is necessary. That enables seg-

mentation of dislocated and/or fractured femur. That would

be very difficult using some sort of algorithm that relies on

an estimated structure (such as atlas-based segmentation).

In comparison to manual segmentation the algorithm is

able to find the corticallis with a precision of about 1 voxel

with sufficient number of control points. It also very quickly

converges to the correct solution with the number of control

points. Datasets of most patients need about 1-5 control

points for error less than 5% of voxels of the whole volume.

It takes about 1.5 to 3 minutes for an average CT dataset

to completely segment a femoral head with broken femoral

neck and the segmentation including loading and visual er-

ror checking.

The algorithm always converges and has more intuitive

parameters than active snakes based methods or even sim-

ilar algorithms based on dynamic programming approach,

such as in [5], thus is more suitable for a user without deeper

mathematical knowledge.

The algorithm runs in a reasonable time of several sec-

onds for the whole segmentation. One slice segmentation

can be considered a real-time algorithm on a mid-level mod-

ern PC and allows to edit control points interactively.

Our application was used in the Radiology Department

of University Hospital Bulovka in Prague for bone quality

estimation during a research project that tried to find a re-

lationship between the trabecular bone density and the suit-

ability of a patient for screw treatment of a femoral neck

fracture.
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