
A Hardware Accelerator with Variable Pixel Representation & Skip Mode
Prediction for Feature Point Detection Part of SIFT Algorithm

Abstract

Scale Invariant Feature Transform (SIFT) is well accepted

as a robust feature point detection algorithm, which is
invariant to rotation, scaling, illumination and viewpoint
changes. Though powerful, high computation complexity acts
as a bottleneck of the real-time systems. It is not until recently
that the only hardware implementation scheme is proposed to
reach real-time processing. In this paper, we propose a
hardware accelerator structure of the Feature Point Detection
part in SIFT which is possible to implement on FPGA. We
apply integer-based Variable Pixel Representation which
represents a pixel with variable number of registers in
different computational stages to reduce redundant register
consumption. Also, we introduce Skip Mode Prediction into
the system, eliminating redundant computation, so as to
shorten averaged computation time per pixel. Our work
proves to speed up Max Clock Frequency for 75.0%, lower
Register Consumption for 13.6%, and achieve higher
Accuracy for 10-20% and Efficiency for 10.4% over
conventional work. The proposal is more suitable for real-
time system design of SIFT.

1. Introduction

The SIFT algorithm proposed by David Lowe in the year of

1999 in [1] [4]. SIFT algorithm is widely accepted as a
powerful method of feature point detection, which is invariant
to Scale, Rotation, Viewpoint and Illumination Changes.
Many modifications of the algorithm have been proposed and
do help improve performance of SIFT. Nevertheless,
bottleneck exists. Time consumption of the algorithm is
relatively huge as a result of complex processes of the
algorithm to achieve its robustness.

Due to its high complexity, hardly any real-time system
exists. GPU-based system has been proposed in [3] [5] [6].
Although accelerated, this method greatly depends on the
performance of the GPU chip and the PC environment, and the
results vary much from computer to computer. Quite recently,
the only hardware implementation architecture is proposed in
[2], with focus in the Feature Point Detection Part. The result
showed promising view of hardware-aided implementation of
SIFT, but redundant register consumption and redundant
computation exist.

Our aim is to further accelerate Feature Point Detection
Part of SIFT algorithm. By introducing Variable Pixel
Representation (VPR) Scheme and Skip Mode Prediction
(SMP) Scheme, we successfully reduce register consumption,
achieve higher Max Clock Frequency, and lower averaged
computation time. Our proposal also shows about 10.4%
higher efficiency, and 10-20% higher accuracy over
conventional work.

This paper is arranged as follows. A brief introduction to
SIFT and corresponding hardware-aided structure is given in
SECTION 2, followed by problem statement of the existing
hardware implementation proposal in SECTION 3. We will
give out an advanced proposal of hardware structure of the
Feature Point Detection part in SECTION 4. Results and
Analysis will be given at the last part.

2. SIFT and Conventional HW-Aided Structure

Figure 1 Hardware-Aided Structure of SIFT Implementation

The most significant advantage of SIFT over other

algorithms is that the feature points detected are invariant to
image scaling and rotation, while at the same time robust to
changes in illumination, noise, occlusion and minor changes in
viewpoint. In addition to these properties, those feature points
are highly distinctive, relatively easy to extract, allow for
correct object identification with low probability of mismatch
and are easy to match against a database of local features.
They are also robust to occlusion; as few as 3 SIFT features
from an object are enough to compute its location and pose. In
addition to object recognition, the SIFT features can be used
for matching, which is useful for tracking and 3D scene
reconstruction.

Gaussian & DoG Pyramid
Construction

Feature Point Detection

Orientation Calculation

Descriptor Creation

PC/GPU pre-
computation

Specified
Hardware

Implementation

Jingbang QIU, Tianci HUANG, Yiqing HUANG, Takeshi IKENAGA

Graduate School of IPS, WASEDA Univ.
N355, 2-7, Hibikino, Wakamatsu, Kitakyushu, 808-0135, Japan

E-mail: megisgem0630@ruri.waseda.jp

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN8-9

239

In [2], a hardware implementation idea is proposed, which
is to break up SIFT into two parts (Fig. 1). The first part
consists of only Guassian & DoG Pyramid Construction,
which is implemented by PC or GP-GPU. The second part
consists of Feature Point Detection, Orientation Calculation,
and Descriptor Creation, which are most time consuming. The
second part is proposed to be implemented on specified
hardware. Research [2] majorly focus on implementation of
Feature Point Detection Part because as a whole SIFT is too
large a system to discuss at a time.

Research [2] also notice that, by introducing the hardware-
aided proposal, time consumption of SIFT algorithm can be
reduced greatly to less than 5% of what it was originally in PC
implementation.

3. Problem Statement: Redundant Register &
Redundant Computation

Research [2] though, has successfully implemented SIFT
on FPGA and required similar result with original software
implementation, that proposal, as a matter of fact, can be
further improved by the means of resource consumption and
averaged time consumption.

The two major problems from the paper are that,
1) Redundant registers used to represent one pixel. As not

all of the processes need the same accuracy for
computation, it is not wise to use the same number of
registers to represent a pixel.

2) Redundant Computation. As analysis shown below, we
can see that only very small part of pixels need full
computation throughout the system, while in fact, most
of the pixels would be eliminated by Contrast Pre-
Elimination and Extrema Detection (Tab. 1).

Table 1 Pass-Through Rate Analysis (640x480)

Item Computation
Rounds

Pass-
Through

Pixels

Pass-
Through

Rate
Contrast Pre-
Elimination 116415011 288403 0.25%

Extrema
Detection 288403 1319 0.46%

Contrast
Elimination 1319 727 55.04%

Too-Edge-Like
Elimination 726 658 90.63%

4. Proposed Schemes

As shown in SECTION 3, redundant register consumption

and redundant computation exist in conventional work. In
order to solve these two problems, we propose 3 new schemes

of Feature Point Detection Part implementation, that is,
Variable Pixel Representation, Skip Mode Prediction and
Parallel Hardware Architecture.

 4.1 Variable pixel representation (VPR)

To solve the problem of redundant register consumption,
we propose to use different numbers of registers to represent a
pixel in different processes throughout the computation (Fig.
2).

The merit of doing this is that,
1) Fewer registers are consumed. In some part of the

whole process, less accuracy may yield same result,
e.g. the result is the same when we use 5 registers to
represent a pixel in the Contrast Pre-Elimination Part
as the 11-register case.

Figure 2 Variable Pixel Representation

2) Fewer gates are consumed. This is a consequence of

reduced number of registers.
3) Time consumption slightly down-goes. Critical path

can be shortened with smaller gate consumption.

4.2 Skip mode prediction (SMP) with zero matrix
detection

As analyzed in SECTION 3, we can find out that by pre-
computing the result of Contrast Pre-Elimination and Extrema
Detection, we can skip a very large number of redundant
computations.

Actually, we need not to compute to whole process to
decide a certain pixel is useful or not. We can pre-compute the
result and skip the computation of a certain point. This
although does not bring advantage to shortening critical path,
it does help to reduce average computation time (Fig. 3).

In our proposal we also combine the Zero Matrix Detection
into the prediction. Zero Matrix Detection is to find out the
potential Zero Matrix which is not able to create its Inversed
Matrix.

6 registers / pixel

11 registers / pixel

Too-Edge-Like
Elimination

Extrema
Detection

Interpolation

Contrast
Elimination

5 registers / pixel

Contrast
Pre-Elimination

9 registers / pixel

Zero Matrix
Detection

240

Figure 3 Block Diagram for Skip Mode Prediction

We use the Hessian Matrix to determine potential Zero
Matrix as follow (Fig. 4),

0��
IssIysIxs
IysIyyIxy
IxsIxyIxx

H (1)

Where Ixx=(P15+P13)-(P14+P14); Iyy=(P16+P11)-(P14+P14);
Iss=(P23+P5)-(P14+P14); Ixy=((P18-P16)-(P12-P10))>>2;
Ixs=((P24-P22)-(P6-P4))>>2; Iys=((P26-P20)-(P8-P2))>>2;

Figure 4 Pixel Arrangements for Hessian Matrix
Computation

The function of Zero Matrix Detection is to eliminate error

detection of feature point. The reason for using Hessian
Matrix is that, Hessian Matrix shows the relationship among
the 3D pixel area. When Hessian Matrix is a Zero Matrix, this
would mean the current pixel area contains mostly pixels with
similar values. However, feature point is not likely to be in
these areas. So it is reasonable for us to apply Zero Matrix
Detection.

4.3 Parallel HW Architecture

By introducing the former two schemes, we re-arrange the

blocks in a parallel way as follows (Fig. 5),

We use the result from the Zero Matrix Detection, Contrast
Pre-Elimination, and Extrema Detection to generate a Skip
Signal which directly links to FP Memory Part as an
asynchronized Control Signal, which directly generates a
FINISH signal to the DoG Memory Part to indicate reloading
of the next pixel.

This scheme shortens the critical path greatly because
many computational stages are computed at a time instead of
computing sequentially.

Figure 5 Parallel Architecture Modification

5. Result & Analysis

A software simulation using proposed modification is

shown as below (Fig. 6 & Tab. 2).

Figure 6 Software Simulation of Proposed Schemes

intervals 1 2 3

 4 5 6
 7 8 9

 16 17 18

 25 26 27

15

12

24
21

DoG
 Memory

Contrast
Pre-Elimination

Extrema
Detection

Contrast
Elimination

Too-Edge-Like
Elimination

FP
Memory

Data Flow
Control Signal

Skip Mode
Prediction

Zero Matrix
Detection

Interpolation
(Former)

Interpolation
(Latter)

Zero Matrix
Detection

Contrast
Pre-Elimination

Extrema
Detection

Skip Mode
 Prediction

Pixel Information

Skip Signal

241

Table 2 Parameters & Data of Proposed Modification

Image Size 640x480
Octaves 6 Intervals 3

Interpolation 1 #Feature Point 514
Efficiency* 98.44% Cover Rate** 93.05%

* Efficiency is defined as division of number of effective feature
points by number of total feature points. The higher efficiency is, the
less time can be spent in redundant calculation.
** Cover Rate indicates how many percentages the detected feature
points covers those feature points detected by original program.

By comparing our result with [2], we may find out that our

advanced proposal does not only excel [2] by the means of
less consumption of registers and gates, but also by the means
of higher accuracy, higher efficiency and higher cover rate
(Fig. 7 & Fig. 8 & Tab. 3).

Figure 7 AAD (Averaged Absolute Difference) Comparison
with Conventional Work*

*ADD is designed to compute how much the results from the proposed
scheme are different from the original ones. Definition of ADD is as follows.
Psw(i) is a certain value of the ith corresponding feature point by the original
software solution; Phw(i) is a certain value of the ith corresponding feature
point by the hardware solution; n is the total number of corresponding feature
points.

� �
n

PP
AAD

n

i
iHWiSW�

�

�
� 1

2
)()(

 (2)

Figure 8 Cover Rate & Efficiency Comparison with

Conventional Work

Table 3 Parameters of FPGA Implementation*

Image Size 640x480

Item Conventional
Work

Proposed
Scheme

Improved
Ratio

Slice Flip
Flop 2482 2134 13.9%

LUT 4896 4228 13.6%
Max Clock
Frequency 68.0MHz 119.0MHz 75.0%

* Hardware design is based on Altera FPGA board and software environment
of Quarters II.

6. Conclusion

As shown in the last SECTION, we can see that by

introducing our proposal, the performance of Feature Point
Detection Part has overall improvement over conventional
work. We are able to achieve 10-20% higher accuracy, 10.4%
higher efficiency, 13% of fewer registers and gates, and 75.0%
of higher clock frequency.

Acknowledgement

This work was supported by fund from MEXT via

Kitakyushu innovative cluster projects and CREST, JST.

References

[1] David G. Lowe, "Object recognition from local scale-invariant
features" International Conference on Computer Vision, Corfu,
Greece, pp. 1150-1157, Sep. 1999

[2] Jingbang QIU, Tianci HUANG, Takeshi IKENAGA, "Hardware
Accelerator for Feature Point Detection Part in SIFT Algorithm &
Corresponding Hardware-Friendly Modification", SASIMI 2009

[3] Konstantinos Dermitzakis, Supervisor: Eric McKenzie, "A GPU
implementation of the SIFT algorithm: An MSc Project Proposal"
www.inf.ed.ac.uk/events/jamboree/2007/Posters/k-dermitzakis.pdf

[4] David G. Lowe, "Distinctive image features from scale-invariant
keypoints" International Journal of Computer Vision, 60, 2, pp. 91-
110, 2004

[5] Sudipta N.Sinha, Jan-Michael Frahm, Marc Pollefeys, and Yakup
Genc, "GPU-based Video Feature Tracking and Matching" Technical
Report TR 06-012, Department of Computer Science, UNC Chapel
Hill, May. 2006

[6] S. Heymann, K. Muller, A. Somlic, B. Frohlich, and T. Wiegand,
"SIFT Implementation and Optimization for General-Purpose GPU",
Journal of WSCG 15,Nr.1-3, 2007

242

