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Abstract

Real-time stereo vision is a very resource inten-
sive application, requiring a high computational perfor-
mance. Therefore, we analyze the well known Census
Transform not only for an increase in accuracy, but
also for a reduction in complexity. We propose a novel
approach, using the Modified Census Transform on the
intensity as well as the gradient images, that can be
efficiently combined with a sparse computation. Our
evaluation of this approach on the images of the Mid-
dlebury stereo ranking shows that it allows scaling the
algorithm’s complexity down by a factor of 5.8, while
still being more accurate than the original transform.

1 Introduction

Stereo vision is a popular technique for maintaining
three-dimensional images in robotic applications [11,
12, 16]. It is flexible, small in size and since it is entirely
passive, it does not affect its neighborhood. Stereo vi-
sion uses two cameras side by side, measuring the dis-
placement of the image objects caused by the cameras’
different viewpoints. This displacement is called dis-
parity and directly correlated to the distance of the
corresponding objects.

Great efforts have been made in improving the qual-
ity of the resulting disparity map, leading to highly
accurate algorithms such as graph cuts, belief prop-
agation, and segmentation [8, 9, 19]. However, the
algorithm most frequently used in real-time stereo
vision applications is the Sum of Absolute Differ-
ences (SAD) [1] on gray scale images [6, 5, 17]. Re-
cently, the more robust Census Transform [20] has been
used [7, 10, 18], but at the costs of higher computa-
tional effort.

The lack of state of the art stereo vision algorithms
in real-time applications is due to the fact that stereo
vision algorithms are optimized to gain a high accu-
racy, while the computational complexity is usually ne-
glected. Then again, most real-time applications sim-
ply implement algorithms with a manageable complex-
ity, focusing on the optimization of the implementa-
tion. However, only little effort has been made to op-
timize the algorithms themselves to reduce their com-
putational complexity.

Thus, we analyze the Census Transform and propose
a novel version of the algorithm that not only exhibits
an improved accuracy, but also a highly reduced com-
putational complexity. Furthermore, we discuss how
the algorithm’s complexity can be efficiently scaled to
fit systems with high as well as low computational per-
formance.

2 The Census Transform

The Census Transform [20] is an area-based stereo
matching algorithm with high robustness to illumina-
tion variations [2]. The algorithm first transforms the
images, before the matching costs of each disparity
level are calculated. Therefore, it uses a comparison
function ξ, which is used to compare the center pixel
value i1 of a block of pixels N , with the other pixels’
intensity values i2.

ξ(i1, i2) =
{

1 | i1 > i2
0 | i1 ≤ i2

(1)

Its result, 1 if the center pixel is larger, and other-
wise 0, is then concatenated (

⊗
) to a bit-vector.

Thus, the transformation function TCensus is defined
as

TCensus(I, x, y, st) =
⊗

[n,m]εN

ξ[I(x, y), I(n,m)] (2)

where, I is either the primary or the secondary inten-
sity image delivered by the stereo cameras and st is the
size of the transformed block N .

For the calculation of the matching costs of each
disparity level d, the cost function CCensus is defined
as the Hamming distance over the bit-vectors.

CCensus(t1x,y , t2x+d,y
) = hdist(t1x,y , t2x+d,y

) (3)

For a higher accuracy of the algorithm, the calcula-
tion of the matching costs can be followed by a further
aggregation [13].

3 Intensity and Gradient-Based Census
Transform

For the Census Transform a higher accuracy can
be achieved by increasing the block size. However,
an increased block size also smoothes the images, re-
sulting in noticeable image blur for extensively large
block sizes. To increase the accuracy of the Census
Transform in a different way than increasing the block
size, it is necessary to extend the processed informa-
tion. For extending the processed information, we in-
tegrated the gradient value and its direction into the
transform. However, the computation of the gradient
value and direction must have a low complexity and fit
signal-processor- as well as hardware-based implemen-
tations. While the absolute gradient values in x and y
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directions can be computed easily using the Sobel op-
erator, the calculation of the direction’s angle is known
to be computationally rather expensive. Thus, we sim-
ply expanded the Census Transform to be processed
over the intensity image and the absolute value of the
gradient in x and y direction. This way, we incorpo-
rate information about the direction of the gradient,
without having to calculate its exact angle.

Even if the computation of the gradient value us-
ing the Sobel operator incorporates some basic image
smoothing [4], it still results in a gain in image noise.
Furthermore, image edges in the intensity image result
in a saturation of the pixels in the gradient images.
The Census Transform is not able to cope with image
blocks, where the center pixel is saturated, because in
this specific case the output bit-vector is always at its
maximum value, regardless of the texture in the block.
Thus, incorporating the gradient images using the orig-
inal Census Transform does not lead do an increase in
accuracy.

However, Froeba and Ernst proposed the Modified
Census Transform (MCT) [3], which uses the mean
value over the whole pixel block instead of the center
pixel value. The original purpose of this was to main-
tain an additional bit for the center pixel value in the
bit-vector for face detection applications. Though we
were not able to measure an improved accuracy by this
additional bit-value for the application of stereo vision
on intensity images, it has an additional advantage for
the gradient images: It delivers reliable results even for
blocks with a saturated center pixel.

Thus, we defined our approach as the MCT over the
intensity as well as the gradient images in x (Ix) and y
(Iy) direction (I/Gxy MCT) as shown in equation 4.

TI/GxyMCT (I, x, y, st) =

⊗
[n,m]εN

ξ[I(x, y), I(n,m)]

⊗
[n,m]εN

ξ[Ix(x, y), Ix(n,m)]

⊗
[n,m]εN

ξ[Iy(x, y), Iy(n,m)]

(4)

The calculation of the matching costs is performed
on the enlarged bit-vector in the same fashion as de-
scribed in equation 3.

4 Sparse Computation

Incorporating the gradient in x and y direction not
only extends the information processed by the algo-
rithm, it also extends its complexity by a factor of 3.
To reduce the complexity of the algorithm we chose to
reduce the image resolution of the pixel blocks, pro-
cessed by the I/Gxy MCT. The common approach for
a reduction in resolution would be using gauss pyra-
mids [4], which low-pass filter the images and therefore
avoid aliasing effects, caused by the reduced sampling
rate. However, the filtering of high frequencies also re-
duces accuracy of the matching algorithm, since they
contain essential information for the exact localization
of the matched image objects. Thus, we are simply

under-sampling the images and therefore intentionally
approving the appearance of aliasing effects during the
matching procedure.

The kind of mask used for the under-sampling is not
just a choice of resulting accuracy, it is also highly de-
pending on the processing platform. While hardware-
based implementations, using FPGAs or ASICs, might
be very flexible in the choice of mask, processor-based
systems can have a considerable advantage, if they do
not have to process all image lines in the block and
therefore can optimize their memory access.

Thus, we present four different kinds of masks used
for the under-sampling: Sequentially picking every nth

pixel, a raster mask picking every nth

2 pixel in hori-
zontal and vertical direction, as well as picking either
every nth line or column, and call n the sparse factor.
Figure 1 depicts these mask variations for a sparse fac-
tor n = 2 for all masks but the raster mask, where the
minimum n = 4 is presented.

(a) (b)

(c) (d)

Figure 1: Mask variations for sparse computation: (a)
sequential, n = 2; (b) raster, n = 4; (c) lines, n = 2;
(d) columns, n = 2.

5 Experimental Evaluation

5.1 Test Configuration

For the experimental evaluation of our algorithm we
used the gray-scaled Teddy, Cones, Venus and Tsukuba
images from the Middlebury dataset [13, 14] as de-
picted in figure 2, measuring the disparity maps’ av-
erage correct matches within a deviation of 0.5 pixels.

For the algorithms, the calculation of the match-
ing costs was followed by a 3×3 aggregation, before the
best match was selected using the Winner Takes All
(WTA) algorithm. Furthermore, we refined the results
with sub-pixel resolution by parabola fitting [15], al-
ways using the same sub-pixel resolution as given by
the Middlebury dataset. However, since our analysis
focuses on the accuracy of the stereo matching algo-
rithm depending on its complexity, we avoided further
post-processing steps, even if this would further im-
prove the results. Thus, they are not competitive to
the ones of the Middlebury stereo evaluation ranking.
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For the comparison of the algorithms’ complexity,
we focused at the number of Hamming distance bit
comparisons, i.e., the complexity of the matching cost
computation. While the images are transformed only
once for the whole computation, the computation of
the matching costs has to be performed d times, where
d is the number of different disparity levels computed.
Thus, the computational complexity of the Sobel oper-
ator and the additional transforms are negligible, when
compared to the matching cost computation.

(a) (b)

(c) (d)

Figure 2: Middlebury dataset: (a) Teddy; (b) Cones;
(c) Tsukuba; (d) Venus.

5.2 Results and Comparison

Figure 3 depicts the correct matches vs. the num-
ber of Hamming distance bit comparisons to be per-
formed per transformed block for the Census Trans-
form using block sizes reaching from 3×3 to 19×19 and
the I/Gxy MCT with constant block size 11×11. A hori-
zontal line at 72.19% correct matches outlines the Cen-
sus Transform’s accuracy at block size 11×11. Here, the
I/Gxy MCT uses a rastered sparsing with sparse factors
reaching from 1 to 6. As can be seen in the diagram,
the sparse factor for the I/Gxy MCT has a far smaller
influence on the algorithm’s accuracy than the reduc-
tion in block size for the Census Transform. Thus, it is
possible to sparse the I/Gxy MCT until its complexity
is far less than the Census Transform’s and still be more
accurate. In this specific case, the I/Gxy MCT can be
sparsed until it requires just 27 Hamming distance bits
per 11×11 block, and with 73.4% correct matches be
1.4% more accurate than the original Census Trans-
form, having 121 calculations at the very same block
size.

To reveal the impact of the different kinds of masks
for the sparse computation, we present their results
for the I/Gxy MCT using block size 11×11 in figure 4.
Again, we outlined the Census Transform’s accuracy
at the same block size by an additional horizontal line.
While the raster mask’s accuracy shows a logarithmic
curve, the sequential mask shows a fall-off at sparse
factors that are close to the dimension of the block,
i.e., 11. At these sparse factors, the sequential mask
results in evaluating nearly one column only, while fac-
tors that are not close to the block dimension are better
distributed over the block, leading to more accurate re-
sults.
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Figure 3: Accuracy vs. complexity for Census Trans-
form block sizes 3×3 to 19×19 and the sparsed I/Gxy

MCT at block size 11×11.

Where the sequential and raster masks lead to the
same algorithm complexity the accuracy is also nearly
equal. However, the sequential mask allows for a better
scaling of the algorithm’s complexity. This way, it is
possible to reduce the I/Gxy MCT’s complexity down
to 21 Hamming distance bit comparisons, which is an
reduction factor of 5.8 compared to the Census Trans-
form’s 121 calculations. At this complexity, the I/Gxy

MCT delivers 72.8% correct matches, which is still a
bit more than the Census Transform at this block size.

Even if a reduced complexity is not required for the
desired application, the I/Gxy MCT increases the ac-
curacy to 75.1%, reducing the incorrect matches by
10.3% at the same complexity, when using a sequential
mask with a sparse factor of 3.

For systems with low performance, as can be found
in low cost applications, it will be noticeable that the
I/Gxy MCT has an accuracy of 67.8% even when se-
quentially sparsed by a factor of 41. Here, only 9
bits are required for the Hamming distance, the same
number as for the Census Transform with block size
3×3. The column and line sparse masks show a sig-
nificantly decreased accuracy when compared to the
raster and sequential masks. However, especially the
line sparse mask might be an interesting approach for
systems that have to focus on an optimized memory
access and therefore keep the number of lines required
for the computation as low as possible.

6 Conclusions

The sparse computation of the I/Gxy MCT not only
allows for an increase in accuracy at the same computa-
tional complexity. It also allows to scale the complexity
of the stereo matching algorithm with a minimum loss
in quality to fit systems with high as well as low com-
putational performance.

For the reduction of complexity we proposed the se-
quential and raster masks as the most promising ap-
proaches, while the column and line masks will be of
interest only for implementations with specific require-
ments.

Using our novel approach, the performance of a Cen-
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Figure 4: Accuracy vs. complexity for the sparsing
masks of the I/Gxy MCT.

sus Transform based stereo matching system could be
increased 5.8 times, while still having a slightly im-
proved accuracy. This demonstrates the necessity for
real-time stereo matching applications to optimize not
only the implementation of the algorithm, but also the
algorithm itself.

7 Future Work

The real-time implementation of the proposed al-
gorithm on a DSP-based as well as an FPGA-based
system is ongoing work. For the DSP-based system we
will focus on using a raster mask for the sparse com-
putation. However, for the FPGA-based system the
sequential mask will be the more promising approach.
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