
Voting based Video Classification Using Clustering and Learning

Kei KIKUCHI Seiji HOTTA
Tokyo University of Agriculture and Technology

2-24-16 Naka-cho, Koganei, Tokyo, 184-8588 Japan
kei.kikuchi522@gmail.com

Abstract

In this paper, we propose video classification using lin-
ear manifolds (affine subspaces). In our method, we rep-
resent videos belonging to a same class by several linear
manifolds using k-varieties clustering. When a test video
is given, each frame of it votes for the class to which its
nearest linear manifold belongs. According to this voting,
the test video is classified into the class that achieves the
majority votes. For improving accuracy, a way of adopting
generalized learning vector quantization for our video clas-
sification is also presented. The performance of our video
classification is verified with experiments on short videos
downloaded from Web.

1 Introduction

According to the rapid use of videos on Web, needs for
content-based video applications such as retrieval [1, 2],
copy-retrieval [3], and harmful contents detection [4] have
increased in recent years. For realizing these needs, we
have to develop techniques for processing a large amount of
videos with low computational cost. In this paper, we focus
on nonverbal video classification problems. In other words,
a test video is classified into its corresponding class without
text tags. Of course, it is difficult to represent a video by a
single label. Hence, we focus on short videos constructed
with a single topic such as videos in YouTube [5]. In this
paper, unlabeled and labeled videos are called test and train-
ing videos, respectively.

In this paper, we propose video classification using lin-
ear manifolds (affine subspaces). By using linear manifold
representation, video sequences are compressed effectively
and distances between videos can be measured with low
computational cost. In our method, videos belonging to a
same class are represented by several linear manifolds us-
ing k-varieties clustering [6]. We call these clusters sub-
classes in a class. When a test video is given, each frame
of it (test frames) votes for the class to which its nearest
subclass belongs. According to this voting, the test video is
classified into the class that achieves the majority votes. By
using our classification, test videos can be classified without
specific preprocessing such as shot segmentation. However,
subclasses obtained with k-varieties clustering do not guar-
antee high accuracy. Hence, we apply a learning rule based
on generalized learning vector quantization (GLVQ) [7] to
subclasses for improving accuracy. The performance of our
video classification is verified with experiments on short
videos downloaded from Web.

2 Related work

Several video classification methods such as [8, 9] have
been proposed in the past. However, the most related work
to our video classification is [8], so in this section, let us
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Figure 1: Concept of projection distance.

start with a brief review of the video classification method
described in [8].

Let C and N be the numbers of classes and training
videos, respectively. Assume that the lth training video (l =
1, ..., N ) consisting of nl frames has a single class label yl.

Let x
(l)
s = (x

(l)
s1 · · ·x

(l)
sd )� (s = 1, ..., nl; l = 1, ..., N) be

the d-dimensional feature vector of the sth frame of the
lth training video. Consequently, the lth training video
is represented by a set of feature vectors (i.e., a matrix)

Xl = (x
(l)
1 · · ·x

(l)
nl

) ∈ R
d×nl .

In [8], each training video is represented by a single
linear manifold obtained with principal component anal-
ysis (PCA). That is, the lth training video is represented
by a linear manifold spanned by its origin ml and bases

Ul, where ml and Ul are the mean vector of x
(l)
s (i.e.,

ml =
∑nl

s=1 x
(l)
s /nl) and the eigenvectors correspond-

ing to the r-largest eigenvalues obtained by eigenvalue de-

composition of the covariance matrix Cl =
∑nl

s=1(x
(l)
s −

ml)(x
(l)
s −ml)

�/nl, respectively.
In a classification phase, when a test video consist-

ing of n frames with d-dimensional feature vectors Q =
(q1 · · · qn) ∈ R

d×n is given, the test video is classified into
the class to which the nearest linear manifold belongs. In
practice, the projection distance between the ith frame of
the test video (denoted as qi) and the lth training video (cf.
Fig. 1) can be measured by

di = ‖qi −ml‖
2 − ‖U�

l (qi −ml)‖
2, (1)

so the total sum of projection distances is given by Dl =∑n

i=1 di. In [8], this total sum of distances Dl is regarded
as the distance between the test video and the lth training
one, so the class of the test video (denoted as ω) is estimated
by the nearest neighbor rule:

min
l=1,...,N

{Dl} = Dl∗ ⇒ ω = yl∗ . (2)

By using this method, training videos can be stored by
small memory requirement, and test videos are classified
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Figure 2: Clustering concept for our video classification.

without specific preprocessing such as shot segmentation.
However, this method requires high classification cost when
the number of training videos is large. For overcoming this
difficulty, more simple representation such as a single lin-
ear manifold per class can be applied, but such simple rep-
resentation yields accuracy deterioration. Thus, we propose
here video classification using clustering and learning for
improving classification accuracy and reducing memory re-
quirement as small as possible.

3 Our video classification

3.1 Clustering

In our video classification, training videos in a same
class are represented with k linear manifolds by using the
hard k-varieties clustering (kVC) which is the crisp version
of fuzzy c-varieties clustering [6]. By using this clustering,
we can use clusters obtained by kVC for classification di-
rectly. First, we adopt kVC to all training frames with no
class distinction, i.e., the first step for our video classifica-
tion is described as follows:

Initialization: Choose the number of clusters k. Let y
(l)
s

be the cluster label of the training frame x
(l)
s . Assign

cluster labels (1, ..., k) to y
(l)
s randomly.

Step1: Form the linear manifold of cluster j (j = 1, ..., k)
by applying PCA to the frames of which cluster labels

y
(l)
s are equal to j.

Step2: Classify each frame to its nearest cluster by using
the projection distance. That is, measure the projection

distance between x
(l)
s and cluster j by

dj = ‖x(l)
s −mj‖

2 − ‖U�
j (x(l)

s −mj)‖
2, (3)

where mj and Uj are the origin and the orthonormal
base of the linear manifold for cluster j. When the

nearest cluster is j∗ (i.e., j∗ = arg minj dj), y
(l)
s = j∗.

Step3: Iterate Step1 and Step2 until all cluster labels y
(l)
s

are unchanged.

By the above algorithm, each training frame is assigned to
its nearest cluster (cf. Fig. 2 (a)). However, these clus-
ters are not used for classification directly, so class-specific
k clusters are reconstructed according to cluster labels. In
practice, in class c (c = 1, ..., C), the linear manifold of the
jth cluster for class c is formed by applying PCA to training
frames belonging to class c of which cluster labels are j (cf.
Fig. 2 (b)). We call such cluster the jth subclass in class c.

3.2 Classification rule

In [8], the total sum of projection distances is used for
classification. However, such distance values sometimes
will be large because the number of dimensions of linear
manifolds is limited. Hence, we adopt a voting-based rule to
our video classification. When a test video Q = (q1 · · · qn)
is given, the projection distance between the ith test frame
qi and all subclasses is measured by

d
(c)
j = ‖qi −m

(c)
j ‖2 − ‖U

(c)
j

�
(qi −m

(c)
j )‖2, (4)

where m
(c)
j and U

(c)
j are the origin and the orthonormal

base of the jth (j = 1, ..., k) subclass of class c (c =
1, ..., C). When the nearest subclass of the ith test frame be-

longs to class c∗ (i.e., c∗ = arg minc d
(c)
j ), a vote is added

to class c∗. This voting is done through all test frames. Let
Vc be the total number of votes for class c, the class of the
test video is estimated by the majority voting:

ω = arg max
c=1,...,C

Vc. (5)

4 Learning rule for video classification

The subclasses obtained with clustering described above
do not guarantee high accuracy, so we apply the learning
algorithm called generalized learning vector quantization
(GLVQ) [7] to our classification. In our classification, a test
video is classified by voting, and this voting is done based
on the projection distance between a test frame and its near-
est linear manifold. Hence, we apply GLVQ to subclasses
frame-by-frame.

Let x be a labeled input frame for training. Let m1 and
U1 be the mean vector and the orthonormal basis of the
nearest subclass M1 that belongs to the same class of x.
In contrast, let m2 and U2 be the mean vector and the or-
thogonal basis of the nearest subclassM2 that belongs to a
different class from x. Let us consider the relative distance
difference μ(x) defined as follows:

μ(x) =
d1 − d2

d1 + d2
, (6)

where d1 and d2 are the projection distance values from x to
M1 and M2, respectively. The above μ(x) satisfies −1 <
μ(x) < 1. If μ(x) is negative, x is classified correctly;
otherwise, x is misclassified. For improving accuracy, μ(x)
should decrease for all input frames. Thus, a criterion for
learning is formulated as minimization of a cost function
defined as follows:

S =

nx∑

j=1

f(μ(xj)), (7)

where xj and nx are the jth labeled frame and the number
of labeled frames for training, respectively. The function
f(μ) is a nonlinear monotonically increasing function. In
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[7], a sigmoid function f(μ, t) = 1/(1− e−μt) is used for
a such function, where t is learning time. When a sigmoid
function is used, ∂f/∂μ is derived as f(μ, t){1− f(μ, t)}.
To minimize S, mi and Ui(i = 1, 2) are updated based on
a steepest descent method by the following equations:

mi ←mi − (−1)iα
∂f

∂μ

d3−i

d1 + d2
(y −UiU

�
i y), (8)

Ui ← Ui − (−1)iα
∂f

∂μ

d3−i

d1 + d2
(yy�Ui), (9)

where α is small positive constant (0 < α < 1), and
y = x − mi. In practice, the updated Ui is not an or-
thogonal matrix, so the Gram-Schmidt process is applied
to Ui for orthogonalization in each training step. After
above learning, test videos are classified based on voting
using trained subclasses. As shown in the equations (8) and
(9), manifolds are updated by attractive and repulsive forces
from x. As mentioned in [7], the convergence condition of
GLVQ depends on the relation of these forces, i.e., GLVQ
converges when attractive forces are larger than repulsive
ones. This relation of forces is dependent on the definition
of μ, and we can confirm Eq. (6) satisfies this condition as
well as the original GLVQ algorithm. Hence, it can be ex-
pected that the above manifold learning converges to a good
solution.

5 Experimental results

We tested the proposed method on the videos down-
loaded from MoCoVideo [10]. The video uploaded on Mo-
CoVideo has a single text tag, so we downloaded videos
from the site and constructed a dataset with them. Con-
sequently, we have gotten the dataset that consists of 750
videos formed by 15 classes, i.e., soccer, talk show, car,
comedy show, air show, TV games, basketball, table ten-
nis, swimming, surfing, baseball, news, night scene, train,
and bike race. The average length of a video is 260 sec. In
experiments, we reduced the frame resolution of all videos
to 6 × 8, 9 × 12 and 12 × 16 pixels with a uniform quan-
tization method. Furthermore, we reduced the number of
frames of all videos to 100 frames. In this experiment, we
used color pixel values of each frame as feature vectors.
So, the number of dimensions of each feature vector were
6×8×3 = 144, 9×12×3 = 324, and 12×16×3 = 576,
respectively. All algorithms were implemented with MAT-
LAB on a standard PC that has Pentium 2 GHz CPU and 2
GB RAM.

5.1 Error rates with respect to k

First, we investigated error rates with respect to the num-
ber of subclasses k. Error rates were estimated by 10-fold
cross-validation with varying from k = 1 to k = 7. In all
subclasses, the number of dimensions of linear manifolds
were fixed with r = 10. For learning, α = 10−5 was used
for a positive constant.

Figure 3 illustrates error rates with respect to the num-
ber of subclasses. In this figure, horizontal and vertical
axes denote the number of subclasses and error rates, re-
spectively. The dotted line indicates the error rate obtained
by our method without learning. In contrast, the solid line
indicates the error rate obtained by our method with learn-
ing. As shown in this figure, the error rates decreased with
the number of subclasses increased. This result shows that
subclass representation of videos is effective for improving
accuracy. In addition, by learning, the error rates was im-
proved about 10% in every k.
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Figure 3: Error rates with respect to # subclasses.

5.2 Error rates of video classification

Next, we compared our method with other video classi-
fication methods: Hausdorff distance measure [11], support
vector machine (SVM) [12], projection distance-based clas-
sification [8], and genre classification using shot segmenta-
tion [9].

For matching two videos by a Hausdorff distance, we
represent videos with representative frames obtained by k-
means clustering [11]. In our experiments, error rates of
Hausdorff distance classification were evaluated by varying
the number of clusters.

When SVM is used for video classification, we have to
represent a video as a single feature vector. Here, we repre-
sent a video as a histogram. First, all frames were clustered
into k clusters by using k-means clustering. Next, we com-
puted a histogram by counting frequencies of each cluster in
a video. By this processing, a video was represented as a k-
dimensional histogram h = (h1 · · ·hk)�. Such histogram
was used as feature vectors for video classification. For
SVM, we used the Gaussian kernel K(x, y) = e−α‖x−y‖2

for nonlinear mapping.

In genre classification using shot segmentation, the video
was represented as 11-dimensional feature vector [9]. First,
each video was segmented into shots using the method de-
scribed in [13]. Next, 11 feature vectors were extracted
from each shot of videos. After that, a C4.5 decision tree
was applied to build a classifier.

Table 1 shows the minimum error rate of each method
and its standard deviation in each frame resolution. As
shown in this table, our method with learning outperformed
the other classifiers drastically. In conventional classifiers
using clustering, videos are represented by centroids or rep-
resentative frames. Such compression tends to lose dis-
criminative information, so it is difficult to achieve high
accuracy. In contrast, manifold-based classifiers can repre-
sent various frames by linear combinations of orthonormal
bases. In other words, a representation capacity of linear
manifolds is larger than vectorial features. Note that, how-
ever, the error rate of our method with learning was lower
than the projection-distance-based methods. The difference
between them is a way of classification, i.e., distance-based
or voting-based. In distance-based methods, projection dis-
tances between some frames and their correct classes some-
times gets larger unexpectedly because the number of di-
mensions of linear manifolds is limited. Consequently,
some test videos are misclassified by summing projection
distances. In contrast, voting-based classification is robust
against unexpected misclassification of some test frames,
and such misclassification can be reduced easily by frame-
by-frame learning.
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Table 1: Error rates of each method [%].
classifier 6 × 8 9 × 12 12 × 16

Our method without learning 20.1± 4.2 18.4± 4.5 16.4± 5.1

(k = 4)

Our method with learning 8.9± 3.3 8.4± 4.0 7.3± 3.9

(k = 4)

Hausdorff (k = 11) 34.3± 5.4 31.2± 5.1 29.3± 4.7

SVM (α = 0.003, k = 18) 21.2± 3.9 18.2± 3.2 16.5± 4.1

projection distance [8] 25.6± 5.1 22.6± 4.7 20.0± 5.6

projection distance 19.6± 3.9 16.6± 3.2 15.8± 3.7

with learning [8]

genre classification [9] 22.7± 3.2 20.9± 3.4 19.9± 2.8

Table 2: Classification time [sec].
classifier 6× 8 9× 12 12× 16

Our method (k = 4) 0.1 0.4 1.1
projection distance [8] 1.4 2.2 3.9

5.3 Classification and learning time

Next, we compared classification cost of our method
with that of the projection distance-based method [8]. First,
we measured the mean classification time per video. The
number of dimensions of linear manifolds were fixed with
r = 10. Table 2 shows the mean classification time of each
method. As shown in this table, when the frame resolution
was 6×8 pixels, our method was about 10 times faster than
the projection distance-based method. The reason for this
is the difference of the number of linear manifolds. That is,
the number of linear manifolds in the projection distance-
based method is equal to the number of all training video
N . In contrast, our method requires only k linear mani-
folds in each class (k × C). Hence, our method can clas-
sify videos by lower classification cost than the projection
distance-based method.

In addition, we measured mean time for learning linear
manifolds. The number of iteration for learning was fixed
with 100 times. Table 3 shows the learning time of each
method. As shown in this table, when the frame resolu-
tion was 6 × 8 pixels, our method required about 17000
seconds, but the projection distance-based method required
over 50000 seconds. As shown in Table 1 and Table 3, er-
ror rates decreased slightly according with the frame reso-
lutions increased, but the learning costs were also increased
drastically. Hence, we can conclude that 6 × 8 pixels were
enough for our video classification.

5.4 Effectiveness of learning

Finally, we investigated the effectiveness of learning de-
scribed in Section 4 for voting-based classification. As an
example, in Fig. 4, we show a voted classes of each frame
of a video belonging to class 4. In this figure, the frame
resolution was 6 × 8 pixels. Figure 4 (a) shows the result
obtained by our method without learning. In contrast, Fig. 4
(b) shows the result obtained by our method with learning.
In these figures, horizontal and vertical axes denote frame
numbers and their voted classes, respectively. As shown
in Fig. 4 (a), many frames were misclassified into differ-
ent classes. In contrast, as shown in Fig. 4 (b), almost
of all frames were classified into the correct class (class
4). Hence, it was verified that frame-by-frame learning de-
scribed in Section 4 is effective for improving classification
accuracy of our voting-style classification.

Table 3: Learning time of each method with learning [sec].
classifier 6× 8 9× 12 12× 16

Our method (k = 4) 16582 33563 98772
projection distance [8] 57343 77865 135629
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Figure 4: Effectiveness of learning.

6 Conclusion

This paper presented video classification using linear
manifolds and learning. In our method, a test video is clas-
sified into the class that achieves the majority votes from
test frames. For improving accuracy, we applied a learn-
ing algorithm to our method. The performance of our video
classification was verified with experiments on short videos
downloaded from Web. Experimental result showed that
our method outperformed conventional video classification
methods. Future work will be dedicated to apply other
compression methods such as probabilistic PCA [14] to our
video representation.

References

[1] Y. A. Aslandogan and C. T. Yu, “Techniques and systems for
image and video retrieval,” IEEE Trans. on knowledge and
data engineering, vol. 11, no. 1, pp. 56–63, 1999.

[2] Z. Xiong, et al., “Semantic retrieval of video - review of re-
search on video retrieval in meetings, movies and broadcast
news, and sports,” IEEE Signal Processing Magazine, vol. 23,
no. 2, pp. 18–27, 2006.

[3] A. Joly, O. Buisson, and C. Frelicot, “Content-based copy re-
trieval using distortion-based probabilistic similarity search,”
IEEE Trans. on Multimedia, vol. 9, no. 2, pp. 293–306, 2007.

[4] D. Koizumi, et al., “A method of filtering hazardous images
on WWW image search systems,” J. IPS. Japan, vol. 47, No. SIG8,
pp. 147–156, 2006.

[5] http://www.youtube.com/

[6] J. C. Bezdek “Pattern Recognition with Fuzzy Objective Func-
tion Algorithms,” Plenum Press, 1981.

[7] A. Sato and K. Yamada, “Generalized learning vector quanti-
zation,” NIPS, pp. 423–429, 1995.

[8] K. Kikuchi and S. Hotta, “Video Classification Using Linear
Subspace Methods,” Proc. of KJPR2007, pp.15-20, 2007.

[9] B-T. Truong, S. Venkatesh, and C. Dorai, “Automatic genre
identification for content-based video categorization,” ICPR,
vol. 4, pp. 230–233, 2000.

[10] http://www.mocovideo.jp/

[11] D. P. Huttenlocher, G. A. Klanderman, and W. J. Rucklidge,
“Comparing images using the Hausdorff distance,” Trans. on
PAMI, vol. 15, pp. 850-863, 1993.

[12] C.C. Chang and C.J. Lin,“LIBSVM: A library for support
vector machines,” 2001.

[13] B. T. Truong, et al., “New enhancements to cut, fade, and
dissolve detection processes in video segmentation,” Proc. of
ACM Multimedia, pp. 219-227, Nov. 2000.

[14] M. Tipping and C. Bishop, “Probabilistic principal compo-
nent analysis,” Journal of the Royal Statistical Society, pp. 611-
622, 1999.

230


