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Abstract
In this paper, we propose block matching and learning

using linear manifolds (affine subspaces) for color image
classification. In our method, training images are parti-
tioned into small size blocks. Given a test image, it is also
partitioned into small size blocks, and a linear manifold
corresponding to each test block is formed by its neighbor
training blocks. Our method classifies a test image into the
class that has the shortest total sum of the projection dis-
tances between test blocks and their corresponding linear
manifolds. We also propose a learning algorithm for reduc-
ing the number of blocks without accuracy deterioration.
Experimental results show that our classification performs
as well or better than other classifiers such as support vec-
tor machine with bag-of-keypoints.

1 Introduction
Object recognition is one of the most challenging prob-

lems in computer vision. For this task, bag-of-keypointswas
proposed by Csurka et al. [1] and developed by many re-
searchers. This approach is based on vector quantization of
affine invariant descriptors of image patches, and images are
represented as cluster co-occurrence histograms. By using
these histograms, images are classified with Support Vec-
tor Machine (SVM). Since this method can achieve high
accuracy for object recognition, many researchers have de-
veloped it [2, 3, 4, 5]. However, the main drawback of these
methods is that landscape images such as sea and mountains
are not classified correctly because it is difficult to extract
effective local features for classification from such images.
Moreover, the learning process of SVM will not converge
when the numbers of training samples and classes are large.
This drawback will be a critical problem in near future be-
cause the numbers of training samples and classes in object
recognition are growing increasingly.
For overcoming these difficulties, color image classifica-

tion using block partition has been proposed in 2007 [6]. In
the method, all training images are partitioned into small
block images (cf. Fig. 1 (a)). Given a test image, it is
also partitioned into small blocks. After block partition, k
neighbor training blocks corresponding to each test block
are selected in each class (cf. Fig. 1 (b)). In a classification
phase, mean blocks are calculated with selected neighbor
blocks in each class, and the total sum of distances between
test blocks and their corresponding mean ones is measured
in individual classes. This total sum of distances can be
regarded as the distance between a test image and images
reconstructed by mean blocks (cf. Fig. 1 (c)). Finally, a
test image is classified into the class that has the shortest
total sum of distances between test and mean blocks. This
method does not use local features and SVM, so we do not
suffer from the difficulties described above. However, clas-
sification cost and memory requirement of this approach
tend to be large because the method is a kind of memory-
based classifiers. The simplest way of reducing classifica-
tion cost and memory requirement is to cut down the num-

ber of training blocks, but such reduction yields accuracy
deterioration because the representation capacity of mean
blocks is very limited.
In this paper, we propose block matching using locally

linear manifolds (affine subspaces) instead of mean blocks
for color image classification. In a preprocessing phase, k-
neighbor training blocks of a test one is selected in each
class, and (k − 1)-dimensional locally linear manifolds are
formed by selected neighbor training blocks. In a classi-
fication phase, a test image is classified into the class that
has the shortest total sum of the projection distance be-
tween each test block and its corresponding locally linear
manifold. By using linear manifolds, it is expected that we
can expand the representation capacity of an available small
number of training blocks, so we can reduce the number of
training blocks easily. However, such locally linear mani-
folds formed by k neighbor training blocks do not guaran-
tee high accuracy. Hence, we apply a learning rule based
on generalized learning vector quantization (GLVQ) [7] to
locally linear manifolds for improving accuracy. The per-
formance of our color image classification is verified with
experiments on the WANG color image dataset [8].

2 Related work
The most related work to our color image classification

is [6], so in this section, let us start with a brief review
of the method described in [6]. Let X(j)

i (i = 1, ..., Nj)
be the ith arbitrary size training image belonging to class
j(j = 1, ..., C), whereNj and C are the numbers of images
belonging to class j and classes, respectively. In a prepro-
cessing phase, all training images are partitioned into block
images of which sizes are m × n pixels. Assume nj train-
ing blocks are obtained from class j by this partitioning. Let
x

(j)
i (i = 1, ..., nj) be the vector of which elements are pixel
values of the ith training block. In color image classifica-
tion, color pixel values are directly used as feature vectors.
Consequently, the dimensionality of x(j)

i ism × n × 3. By
using color features, we can easily classify images that are
difficult to describe by local features such as landscape im-
ages.
When an arbitrary size test imageQ is given, partition it

into block images of which sizes arem×n pixels. Assume
nq test blocks are obtained fromQ by this partitioning. Let
ql(l = 1, ..., nq) be the vector of which elements are pixel
values of the lth test block of Q. Let N (j)

l be the set of k
closest training blocks of ql which are selected from class j

using Euclidean distance d(ql, x
(j)
i ) = ‖ql −x

(j)
i ‖2. After

that, the mean block of the selected neighbor training blocks
is calculated by

m
(j)
l =

1
k

∑

i∈N (j)
l

x
(j)
i . (1)
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Figure 1: Color image classification using block partition.

We calculate nq mean blocksm
(j)
1 , ...,m

(j)
nq corresponding

to each test block ql(l = 1, ..., nq) in individual classes. For
a classification phase, the total sum of distances between ql

andm
(j)
l is calculated by

D̄j =
nq∑

l=1

d(ql,m
(j)
l ). (2)

The above D̄j is equivalent to the distance between a test
image and an image reconstructed by mean blocks in class
j. Hence, a test image Q is classified into the class that
has the minimum D̄j , i.e., the class of Q (denoted as ω) is
determined by the following classification rule:

ω = arg min
j=1,...,C

D̄j . (3)

Classification rules using a mean vectors of k nearest
training samples are called local mean-based classifier
(LMC) [9, 10]. Hence, we call the above image classifica-
tion method LMC-based method for short. The LMC-based
method is a kind of memory-based classifiers, so it requires
a large amount of blocks and high classification cost.

3 Color image classification using locally lin-
ear manifolds

The simplest way of reducing classification cost and
memory requirement of the LMC-based method is to cut
down the number of training blocks. However, such re-
duction yields accuracy deterioration due to a small repre-
sentation capacity of mean blocks. By using linear mani-
folds, it is expected that we can expand the representation
capacity of available small number of training blocks. As
an example, a two-dimensional linear manifold spanned by
three training blocks is shown in Fig. 2. Each of the cor-
ners of the triangle represents pure training blocks, whereas
the gray area in between represents linear combinations of
them. These intermediate training samples can be used as
artificial training blocks for classification. Due to this prop-
erty, manifold-based classifiers tend to outperform mean-
based ones in high-dimensional pattern classification. In
addition, we can reduce the classification cost and memory
requirement of manifold-based classifiers easily compared
with mean-based ones.
For measuring the distance between the lth test block ql

and the locally linear manifolds spanned byN (j)
l , solve the
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Figure 2: Example of a locally linear manifold.

following optimization problem [10]:

min
al

‖ql −
∑

i∈N (j)
l

alix
(j)
i ‖2 + λ‖al‖2

s.t. a�
l 1k = 1,

(4)

where al = (al1 · · · alk)� ∈ R
k is a weight vector for

the linear combination of k neighbor training blocks from
class j, and 1k = (1 · · · 1)� ∈ R

k is a vector of which
all elements are 1. In addition, λ is a regularization pa-
rameter. According to our experiments, this parameter is
not sensitive to recognition accuracy, so λ was fixed to
λ = 1.0 × 10−2 in our experiments. The same cost func-
tion can be found in the first step of locally linear embed-
ding [11]. The optimal weights subject to sum-to-one are
found by solving a least-squares problem. The solution of
the above constrained minimization problem can be given
in closed form by using Lagrange multipliers. In brief, the
optimal weight al is given as follows:

al =
(C�

l Cl + λI)−11k

1k
�(C�

l Cl + λI)−11k

, (5)

where Cl and I represent a d × k matrix Cl = (ql −
x

(j)
1 | · · · |ql − x

(j)
k ) and a k × k identity matrix, respec-

tively. Of course, x(j)
i (i = 1, ..., k) in Cl is an element of

N (j)
l . By using the above optimal weight, the distance be-

tween ql and the linear manifold spanned byN (j)
l (denoted

byM(j)
l ) can be measured as follows:

d(ql,M(j)
l ) = ‖ql −

∑

i∈N (j)
l

alix
(j)
i ‖2 + λ‖al‖2. (6)

We calculate nq linear manifolds M(j)
1 , ...,M(j)

nq corre-
sponding to each test block ql(l = 1, ..., nq) in individual
classes. After that, the total sum of distances between ql

andM(j)
l is calculated by

Dj =
nq∑

l=1

d(ql,M(j)
l ). (7)

The above Dj can be regarded as the minimum distance
between a test image and an image reconstructed by locally
linear manifolds in class j. In a classification phase, a test
image Q is classified into the class that has the minimum
Dj , i.e., the class ofQ is determined as follows:

ω = arg min
j=1,...,C

Dj . (8)

The above rule is our proposed color image classification
rule. Incidentally, a classification rule using a linear mani-
fold spanned by k nearest training samples of a test sample
is called local subspace classifier [10, 12].
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4 Computational cost reduction

By using locally linear manifolds, the representation ca-
pacity of an available small number of training blocks is ex-
panded, so we can decrease the number of training blocks.
However, a small number of training blocks does not guar-
antee high accuracy. For overcoming this difficulty, we
apply a learning rule based on generalized learning vec-
tor quantizastion (GLVQ) [7] to locally linear manifolds
for improving accuracy. In GLVQ, prototypes called refer-
ence (codebook) vectors are updated by a steepest descent
method that minimizes a cost function defined by the dis-
tance between a test vector and its nearest prototype. How-
ever, we cannot apply GLVQ to our method directly because
our classification rule is defined with the total sum of dis-
tances between each test block and its corresponding linear
manifold. Hence, we change the cost function of GLVQ
for our classification, i.e., we define the cost function by
using the total sum of projection distances. Consequently,
the update rule of our learning is different from the original
GLVQ algorithm, i.e., in our learning, all neighbor blocks
are updated into optimal positions for improving accuracy.

4.1 Block reduction with learning

In the learning rule shown in here, d-dimensional vec-
tors p called reference block are optimized using training
blocks. Initial reference blocks are selected from training
blocks of each class randomly. These reference blocks then
are optimized using training images.
Let X be a training image, and xl (l = 1, ..., nx) repre-

sents the lth block of X. Here, the locally linear manifold
for the lth training block xl belonging to the same class of
X is denoted asM(1)

l (l = 1, ..., nx). In contrast, the lin-
ear manifold for xl belonging to the different class fromX
is denoted as M(2)

l . Let P(1)
l = (p(1)

l1 , · · · , p
(1)
lk ) be the

k-nearest reference blocks that spansM(1)
l . In contrast, let

P(2)
l be the k-nearest reference blocks that spansM(2)

l . Let
us here define the relative distance difference μ(X) for our
classification as follows:

μ(X) =
D1 − D2

D1 + D2
, (9)

where D1 =
∑nx

l=1 d(xl,M(1)
l ) and D2 =∑nx

l=1 d(xl,M(2)
l ) (cf. Eq.(6)). The above μ(X) sat-

isfies −1 < μ(X) < 1. If μ(X) is negative, X is classified
correctly; otherwise, X is misclassified. For improving
accuracy, we should minimize the following cost function:

S =
N∑

i=1

f(μ(Xi)), (10)

where N is the number of training images, and f(μ) is a
nonlinear monotonically increasing function. To minimize
S, we adopted a steepest descent method with a small posi-
tive constant α(0 < α < 1) to Eq. (10):

P(j)
l ← P(j)

l − α
∂S

∂P(j)
l

, (j = 1, 2), (11)

where ∂S/∂P(j)
l is derived as

∂S

∂P(j)
l

=
∂S

∂μ

∂μ

∂Dj

∂Dj

∂P(j)
l

,

= (−1)j ∂f

∂μ

4D3−j

(D1 + D2)2
(xl − P(j)

l a
(j)
l )a(j)

l

�
, (j = 1, 2).

Figure 3: Image examples of the WANG dataset.

In the above equation, a(j)
l represents the weight vector for

(p(j)
l1 , · · · , p

(j)
lk ) determined by Eq. (5). Consequently, the

update rule for our image classification is given as follows:

P(j)
l ← P(j)

l − δ
(j)
l (xl − P(j)

l a
(j)
l )a(j)

l

�
, (j = 1, 2),

where δ
(j)
l = (−1)jα ∂f

∂μ
D3−j

(D1+D2)
(j = 1, 2). In our ex-

periments, f(μ, t){1 − f(μ, t)} is used for ∂f/∂μ, where
t is learning time and f(μ, t) is a sigmoid function 1/(1 +
e−μt). In a learning phase, k nearest blocks P(j)

l are up-
dated using all training images until training accuracy con-
verges. If all elements of a(j)

l are fixed to 1/
√

k, the above
process can be regarded as a learning rule for the LMC-
based method (cf. next experiments).

5 Experiments

We tested our method on the WANG color image
dataset [8], formed by 10 image classes: African peo-
ple, beach, buildings, buses, dinosaurs, elephants, flowers,
horses, mountains, and food. Each class consists of 100 im-
ages of which sizes are 80 × 120 or 120 × 80 pixels. Thus,
the total number of images is 1000. In this dataset, objects
occur over cluttered backgrounds as shown in Fig. 3. In ex-
periments, these images were partitioned into block images
of which sizes are 10 × 10 and 20 × 20 pixels. All clas-
sification methods were implemented with MATLAB on a
standard PC that has Pentium 2 GHz CPU and 2 GB RAM.

5.1 Classification performance

First, we investigated the classification performance of
the proposed method. Recognition rates were estimated by
5-fold cross-validation with varying the number of neigh-
bors k and block sizes. The same value of k was used over
all classes. In this experiment, we compared the proposed
method with three conventional methods: (i) the LMC-
based method [6], (ii) bag-of-keypoints [1], and (iii) sup-
port vector machine (SVM). For bag-of-keypoints, SIFT
features were extracted from gray-scale images and trans-
formed them into 80 visual words. In SVM, normalized
RGB color histograms with a size of 64 bins were extracted
from each image as feature vectors. For nonlinear mapping,
the Gaussian kernel K(x, y) = e−α||x−y||2 was used in
SVM. In this experiment, the block reduction method was
not applied to our image classification.
The recognition rates of each method and their standard

deviations are summarized in Table 1. Parameters of each
method were determined with validation sets. As shown
in this table, our method with 10 × 10 block outperformed
the other methods, and the result of bag-of-keypoints was
very poor because effective local features were not extracted
from the WANG images. Fig. 4 shows recognition rates
with respect to the number of neighbor blocks k (block size
is 10 × 10 pixels). As shown in this figure, the recognition
rate of our classifier was higher than that of the LMC-based
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Table 1: Recognition rates of each method.
method accuracy [%]

Our method (10 × 10) 88.3 ± 5.8
Our method (20 × 20) 82.9 ± 4.5

LMC-based method (10 × 10) 86.9 ± 5.4
LMC-based method (20 × 20) 82.3 ± 6.9

SVM 78.5 ± 4.2
bag-of-keypoints [1] 41.8 ± 3.4
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Figure 4: Recognition rates with respect to the number of
neighbors k.

method in almost every k. These results show that making
use of linear manifolds is effective on color image classifi-
cation.

5.2 Effectiveness of learning

Finally, we evaluated the effectiveness of learning for
our image classification. In this experiment, we selected
20 images from each class randomly for test images. Con-
sequently, the total number of test images was 200. The
initial reference blocks were selected from the leftover 800
training images. This random splitting was performed in-
dependently in 5-fold cross-validation. Recognition rates
were evaluated with varying the number of reference blocks
as 10, 25, 50, and 100 per class. For comparison, we also
evaluated the LMC-based method with learning. For learn-
ing, α = 10−3 and k = 4 were used as a small positive
constant and the number of neighbors, respectively.
Figure 5 shows the recognition rates of our method and

the LMC-based method with respect to the number of ref-
erence blocks per class (block size is 20 × 20 pixels). As
shown in this figure, even if the number of blocks per class
was 10, our method with learning achieved over 75% ac-
curacy, which was the almost same as accuracy of SVM.
This result showed that making use of a linear manifold
and its learning was effective for improving accuracy of
block-based image classification. In addition, our method
achieved about 80% accuracy with only 25 reference blocks
per class, while the LMC-based method required 50 refer-
ence blocks for achieving the almost same accuracy. Ta-
ble 2 shows classification time of each method. As shown
in this table, our classification rule was 1.6 times faster than
the LMC-based method for achieving about 80% accuracy.
Hence, it can be concluded that we can reduce classification
cost and memory requirement by using our method effec-
tively more than the LMC-based method.

6 Conclusion

This paper proposed block matching using linear man-
ifolds (affine subspaces) for color image classification. In
our method, a test image is classified into the class that has
the shortest total sum of the projection distance between
each test block and its corresponding linear manifold. We
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Figure 5: Recognition rates with respect to the number of
reference blocks.

Table 2: Classification time (sec) per test image (block size
is 20 × 20 pixels).

� blocks our method LMC-based method
2160 (all blocks) 23.0 22.9

100 0.91 0.85
50 0.35 0.32
25 0.20 0.19
10 0.12 0.11

also proposed a learning algorithm for reducing the num-
ber of blocks without accuracy deterioration. Experimental
results showed that our method performed as well or bet-
ter than other classifiers. Future work will be dedicated for
applying object detection to our classification.
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