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Abstract

Feature extraction is an important issue for generic
image recognition. In recent years, methods based on
the bag-of-keypoints technique have been quite success-
ful and are widely used. However, this technique re-
quires the quantization of local patches to build visual
words as a preprocessing step, the computational cost of
which is enormous. On the other hand, methods based
on global image features have been used for a long time.
Because global image features can be extracted rapidly,
it is relatively easy to use them in practical large-scale
systems. However, the performance of global feature
methods is usually poor compared to bag-of-keypoints.
Therefore, it is essential to develop a more powerful
scheme of global feature extraction for achieving prac-
tical applications of generic image recognition. In this
paper, we show that we can boost the performance of
global image features by considering the correlations of
local features in addition to the mean. We experimen-
tally verify the effectiveness of our method using stan-
dard scene classification benchmark datasets.

1 Introduction

Content-based image recognition and understand-
ing is one of the ultimate goals of computer vision.
With the significant advance in computer systems,
appearance-based image recognition methods using
statistical pattern recognition have been making re-
markable progress recently. However, except for some
specific applications such as face recognition, few tech-
niques have reached a practical level. The appearance
of generic objects and scenes that we see in the real
world can vary enormously, even within the same cat-
egory. In order to allow the recognition of such generic
images, image features need to have high expressive
power. At the same time, the speed of feature extrac-
tion and learning should be as fast as possible, because
appearance-based methods will inevitably require an
enormous number of training samples to cover the large
appearance variations exhibited by real world objects.
However, in general, there is a trade-off between per-
formance and speed. The key to achieving practical
image recognition is to properly balance this trade-off.

In this paper, we show that we can perform high
speed and high performance feature extraction by con-
sidering the correlations of local features in addition to
the mean. Our method is basically an example of a
global feature scheme, and so it does not need heavy
preprocessing like bag-of-keypoints. In the experimen-
tal section, we verify the effectiveness of our method
using standard scene classification benchmark datasets.

2 Bag-of-Keypoints vs. Global Feature

In recent years, local-approach image modeling has
been well studied. This approach models an image as a
bag of local features, discarding position information.
The most well-known and widely-used example of this
approach is bag-of-keypoints [1]. The first step of this
method is to perform vector quantization of the lo-
cal features of the training images to obtain centroids,
which represent the visual words. The resulting fea-
ture is the histogram of visual word occurrences in the
image. The benefit of this approach is that we can ex-
tract the distribution information of local features ef-
fectively. Studies based on this technique have recently
obtained very good performance.

However, a major drawback of bag-of-keypoints is
that the process of building visual words is compu-
tationally quite expensive. Also, the parameter cor-
responding to the number of visual words affects the
generalization ability, and choosing too high a parame-
ter can cause overfitting. Without any prior knowledge
of tasks, an experimental tuning process is needed to
find the optimal setting for this parameter. Therefore
we need to perform trials of vector quantization many
times. The computational cost of the learning process
thus becomes quite expensive. For this reason, bag-of-
keypoints has only been used in relatively small size
datasets until now.

On the other hand, global image features, which dis-
card the distribution of local features and describes
the whole image feature, have been used for a long
time in Content Based Image Retrieval (CBIR) [2].
This can be interpreted as the simple mean of local
features densely sampled from an image. Color his-
togram and edge histogram are representative exam-
ples. This scheme does not require a preprocessing
step like bag-of-keypoints, and enables extremely fast
feature extraction. Therefore, it is relatively easy to
apply this scheme to large scale datasets. Also, it is
quite stable because it uses only low level statistics
(the mean). However, because this approach discards
all the information relating to the distribution of local
features, it is undeniable that the expression power is
inferior to local approach. Although in some datasets
global feature methods obtain performance comparable
to local approach methods by concatenating multiple
descriptors [3], in most cases the performance of global
features are worse than that of local approaches.

Thus, bag-of-keypoints and global features provide
different points in the trade-off between performance
and speed. In this paper, we propose a new scheme
of boosting the performance of global image features,
without paying a much greater computational cost. To
do this we add basic distribution information by calcu-
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lating the correlation of local features. These are also
low level statistics, like the mean.

3 Generalized Local Correlation

Here, we have N training images. Suppose there
are p(j) d-dimensional local features v

(j)
k (k ≤ p(j)) in

an image I(j)(j ≤ N). Normal global image features
are interpreted as using the mean of the local fea-
tures μ(j) = 1

p(j)

∑p(j)

k v
(j)
k . Our method supplements

this mean vector with the correlations of the local fea-
tures. For example, we can obtain 1

2d(d + 1) 1st or-
der correlations. We concatenate the mean and cor-
relations as the feature vector of the image I(j). Let
R(j) = 1

p(j)

∑p(j)

k v
(j)
k v

(j)T
k denote the auto-correlation

matrix of local features. Then we get the feature vec-
tor,

x(j) =
(

μ(j)

upper(R(j))

)
. (1)

Here, upper() is a function that enumerates the com-
ponents in the upper triangular part of a matrix.
We call this feature as the Generalized Local Corre-
lation (GLC), to emphasize that this scheme can be
applied to any generic local descriptor. Of course we
can extract even higher order correlations. However,
in this paper we use at most 1st order correlations,
because the dimension of the feature vector becomes
exponentially large when we use higher-order correla-
tions, making it difficult to prevent overfitting.

Moreover, when the dimension of local features d is
large, even the number of the 1st order correlations be-
comes quite large. To address this problem we perform
dimensionality reduction using PCA. Let R denote the
auto-correlation matrix of local features extracted from
all training images, then

R =
1∑N

j p(j)

N∑
j

p(j)R(j). (2)

We can obtain the projection matrix U by solving an
eigen value problem as follows,

RU = UΩ (UT U = I). (3)

Here, Ω is a diagonal matrix having eigenvalues as the
elements. We cut off the principal component space
at a proper dimension m, and use the first m eigen
vectors as the projection matrix Um. The resultant
feature vector can be obtained as follows,

x(j) =
(

μ(j)

upper(Um
T R(j)Um)

)
. (4)

GLC can also be interpreted as the mean of poly-
nomial combinations of local features. Therefore, it
follows the scheme of conventional global image fea-
tures, and its advantageous properties such as position
invariance and additive property are preserved. This
is one of the major merits of GLC.

4 Implementation

4.1 Local Feature Extraction

Keypoint Detection: Generally, local feature
methods involve two steps. The first one is keypoint

detection, and the second one is the feature description
at the keypoints. The best known method of local fea-
ture description is SIFT [4], which uses Difference of
Gaussian filters to perform keypoint detection. How-
ever, for image classification, keypoint detection based
on filters does not always work effectively. Nowak et
al. [5], in a study comparing image classification perfor-
mance achieved by various keypoint detection methods
on several datasets, showed that random keypoint de-
tection achieved the best performance. Also, Fei-Fei
et al. [6] performed classification on 13 image scene
datasets, and showed that grid-based keypoint detec-
tion gave the best performance. Considering these in-
sights, we perform keypoints detection based on a grid.
This strategy is called Dense Sampling.

Feature Description: We use the SIFT descriptor
[4] as the local feature descriptor. We space the key-
point M pixels apart, and extract 128-dimensional lo-
cal feature (Gray-SIFT) from each region of L×L pixels
having the keypoint at the center. For a color image,
we extract SIFT descriptions independently from each
RGB component and concatenate them to get 384-
dimensional local feature (RGB-SIFT). Also, it was
shown by Bosch et al. [7] that multiscale SIFT feature
description can improve the robustness against a scale
change. We follow this strategy in our experiments.

To provide a baseline, we also investigate the perfor-
mance of our method using edge histograms and color
histograms as local descriptors.

4.2 Classification Method

A common tool for classification in recent work on
generic image recognition has been the Support Vec-
tor Machine (SVM). In spite of its widespread use, the
SVM has a major drawback: the computational cost
for learning increases in proportion to the square of the
number of training samples. One of the goals of our re-
search is system scalability, so the computational cost
of the SVM is not acceptable. Instead, we use Prob-
abilistic Linear Discriminant Analysis (PLDA) [8], a
probabilistic interpretation of LDA. The learning pro-
cess of LDA involves only the solution of a generalized
eigenvalue problem. The computational complexity of
learning is linear in the number of the training samples.
This makes it possible to train the system relatively
fast, even in a large scale problem.

Let K denote the number of target classes, Σw de-
note the within-class covariance matrix, and Σb denote
the between-class covariance matrix. LDA is formu-
lated as the following generalized eigenvalue problem.

ΣbW = Σ́wWΛ (WT Σ́wW = I). (5)

Here, Σ́w = Σw + αI. α is a parameter to decide the
amplitude of the regularization matrix, which is used
to prevent overfitting. Currently, we tune α experi-
mentally. The regularization matrix is unnecessary if
we have enough samples, but the larger the feature di-
mension used, the larger the number of required sam-
ples.

Let n = N/K denote the number of samples in each
class, and μx denote the mean of an image feature over
the entire dataset. The following projection maps an
image feature x to a point in the latent space:

u =
(

n − 1
n

)1/2

WT (x − μx). (6)
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The covariance of the latent values is given by the fol-
lowing expression:

Ψ = max

(
0,

n − 1
n

Λ − 1
n

)
. (7)

Using this structure, we classify a newly input sam-
ple xs by maximum likelihood estimation. We assume
that us, the projected point of xs, is generated from a
certain class C with probability:

p(us|uC
1...n) = N

(
us| nΨ

nΨ + I
ūC, I +

Ψ
nΨ + I

)
. (8)

Here, uC
1...n are latent values of n independent training

samples that belong to class C, and ūC is the mean of
them. We classify xs to the class which has the largest
value of eq.(8).

Although LDA is a classical multivariate analysis
method, we can perform optimal classification with
probabilistic background using the scheme of PLDA.
Moreover, in the classic LDA setting, the dimension
of the discriminant space becomes a problem. How-
ever, we do not need to do this in PLDA because it
automatically weights each dimension according to the
discriminant criterion.

5 Data Sets

We experiment with two commonly used scene
classification benchmark datasets. One is by Oliva
et al. [9] (OT8), and one is by Lazebnik et
al. [10] (LSP15). OT8 consists of 2,688 color images of
eight classes shown in Fig. 1. Each class has 260∼410
sample images. We also use OT4N which contains four
natural scene classes of OT8 (coast, forest, mountain,
open country), and OT4MM which contains four man-
made scene classes (highway, inside city, tall building,
street).

LSP15 consists of gray images of OT8 plus seven
additional classes shown in Fig. 2. In all, it has 4,492
gray images. LSP15 has the largest number of target
classes among scene datasets currently in use.

coast forest mountain open country

highway inside city tall building street

Figure 1: Sample images from the OT8 datasets.

6 Experiment

We randomly choose 100 training images for each
class in OT8 and LSP15, 250 in OT4N and OT4MM.
We use the remaining samples as test data, and cal-
culate the mean of the classification rate of each class.

bedroom kitchen livingroom store

suburb industrial office

Figure 2: Additional seven classes in LSP15.

This score is far averaged over many trials replacing
the training and test samples randomly. In this paper,
we use the average over 100 trials.

6.1 Baseline Performance in OT8

Here, we investigate the effectiveness of GLC us-
ing three different local descriptors in OT8. We use
the local edge histogram, the color histogram, and the
SIFT descriptor. For the edge histogram, we extract
72-dimensional gradient direction histogram from gray
scale images. For the color histogram, we use the stan-
dard 84-dimensional HSV color histogram from color
images. We use 36 dimensions for H, 32 dimensions for
S, and 16 dimensions for V. For these two descriptors,
we fix the parameters of the sliding window as L = 10
and M = 5. We extract GLC as eq.(1).

As for SIFT descriptor, we fix the parameters as
L = 16 and M = 5. However, because the dimension
of SIFT descriptor is large, we perform dimensionality
reduction using PCA beforehand, and then extract the
1st order GLC as shown in eq.(4). We use m = 30
PCA vectors.

Table 1 shows the performance of each local feature
description. “Mean” is the case in which only the mean
of local feature is used. This can be interpreted as 0th
order GLC, and is very similar to normal global fea-
ture. “GLC (1st)” is the case in which we also use the
local correlations proposed in this paper. As these re-
sults show, the performance considerably improves in
each type of local descriptor when GLC is used. Also,
it is shown that the performance of SIFT descriptor is
significantly better than those of two baseline descrip-
tors.

Table 1: Baseline performance in OT8 (%).
Descriptor Mean GLC (1st)
Edge Hist 66.5 73.6
Color Hist 44.9 51.8
Gray-SIFT 73.1 84.8
RGB-SIFT 77.7 86.7

6.2 Comparison with previous works

Next, we compare the performance of our method
with pervious works in OT8, LSP15, OT4N, and
OT4MM. We use RGB-SIFT as the descriptor for
OT8, OT4N and OT4MM, and Gray-SIFT for LSP15.
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We extract GLC from four different scales, L =
8, 16, 24, 32. These scale parameters are the same ones
used by Bosch et al. [7].

Recently it has been shown that recognition perfor-
mance can be improved by adding spatial information
using hierarchical partitioning of images [10]. There-
fore, much recent work uses Spatial Information (SI).
However, using this type of information can be thought
of as task fitting and does not always guarantee per-
formance improvement. Our objective is to compare
the generic performance of the systems. Therefore, we
summarize both cases of previous works, using SI and
not using SI. Note that our method does not use SI.

Table 2 shows the result of performance compari-
son. [7, 10] extract bag-of-keypoints using SIFT de-
scriptor, and perform classification via SVM etc. [11]
estimates a part-based generative model of images us-
ing Conditional Random Field (CRF), and performs
classification and segmentation of an image simultane-
ously. However, its computational cost is even higher
than that of bag-of-keypoints.

It is notable that even in the “Mean” case our ap-
proach obtains a comparable performance to those of
previous works in “no SI”. This is probably because
global feature methods are well-suited to the task of
scene classification. Also, it appears that multiscale
SIFT description increases performance. Furthermore,
in case of “GLC (1st)”, our method considerably out-
performs previous works in “no SI”, and even achieves
performance close to those in “with SI”. Thus, in spite
of the simplicity of our feature description and clas-
sification methods, it is shown that our system has a
performance comparable to state-of-the-art methods.

Table 2: Comparison of the performance in four scene
datasets (%).

Dataset Mean GLC Previous
(1st) no SI with SI

OT8 81.9 88.4 82.3 [11] 90.2 [11]
82.5 [7] 87.8 [7]

OT4N 86.7 91.8 90.7 [7] 93.9 [7]
89.0 [9]

OT4MM 89.6 93.9 91.7 [7] 94.8 [7]
89.0 [9]

LSP15 70.7 79.6 72.7 [7] 83.7 [7]
74.8 [10] 81.4 [10]

6.3 Discussion of Scalability

Here we estimate the computational cost of final
feature extraction and preprocessing respectively. Let
p denote the number of local features in an image,
d denote the dimension of local features, and V de-
note the number of visual words in bag-of-keypoints
scheme. The computational cost of the final image fea-
ture extraction per image is O(pd2) for our method
and O(pV d) for bag-of-keypoints. In most work, V
is substantially larger than d. Also, V must be made
much larger as the task becomes larger and more com-
plicated.

Furthermore, the bag-of-keypoints method requires
a preprocessing step in which the local features are
clustered using the K-means algorithm. The compu-
tational cost of this process becomes greatly enlarged

with the scale of the task, because the number of train-
ing samples and V both increase. Moreover, it uses a
massive amount of memory to store the local features of
all the training samples. Our method does not require
a substantial preprocessing step. The only preparation
necessary is to find the PCA matrix, and this operation
is linear in the number of training samples. Also, it re-
quires a small amount of memory because it needs to
preserve only the covariance matrix in memory. Thus,
our method is not only accurate but also quite fast and
highly scalable.

7 Conclusion

In this paper, we proposed a method to boost the
performance of global image feature methods by using
local feature correlations. In experiments, we showed
that GLC substantially improves performance for a va-
riety of local descriptors. In the quantitative compari-
son using OT8 and LSP15, we obtained a comparable
performance to state-of-the-art methods based on lo-
cal approach like bag-of-keypoints. In addition, our
method is much faster and more scalable than bag-of-
keypoints. Therefore, our method is a highly practical
one which achieves a good balance in the trade-off be-
tween accuracy and speed.

Our future work is to investigate the effectiveness of
our method in other benchmarks of various tasks such
as object recognition and texture recognition. Also,
we will test our method in large scale datasets and try
to consider remaining issues such as using higher-order
correlations.
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sification using a hybrid generative/discriminative ap-
proach. IEEE Trans. Pattern Analysis and Machine
Intelligence, pp. 712–727, 2008.

[8] S. Ioffe. Probabilistic linear discriminant analysis. In
Proc. ECCV, pp. 531–542, 2006.

[9] A. Oliva and A. Torallba. Modeling the shape of the
scene: A holistic representation of the spatial envelope.
International Journal of Computer Vision, Vol. 42,
No. 3, pp. 145–175, 2001.

[10] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags
of features: Spatial pyramid matching for recognizing
natural scene categories. In Proc. IEEE CVPR, 2006.

[11] Y. Wang and S. Gong. Conditional random field for
natural scene categorization. In Proc. BMVC, 2007.

198


