
Design of Feature Extraction Operators for use on Biologically 
Motivated Hexagonal Image Structures 

1Sonya Coleman, 2Bryan Scotney, 1Bryan Gardiner 
 1University of Ulster, Magee, BT48 7JL, Northern Ireland  

2University of Ulster, Coleraine, BT52 1SA, Northern Ireland 
{sa.coleman, bw.scotney}@ulster.ac.uk 

gardiner-b@email.ulster.ac.uk 
 

Abstract 
 

For many years the concept of using hexagonal pixels 
for image capture has been investigated, and several 
advantages of such an approach have been highlighted. 
Recently there has been a renewed interest in the use of 
hexagonal images: biologically inspired approaches, 
representation of architectures for such images and 
general hexagonal image processing. We present multi-
scale hexagonal gradient operators that are developed 
within the finite element framework for use directly on 
hexagonal pixel-based images. We evaluate the proposed 
operators using simulated hexagonal images and provide 
performance evaluation using the Figure of Merit 
technique for comparison with existing hexagonal gradient 
operators.  
 

1. Introduction 
Image processing tasks have traditionally involved the 

use of square operators on rectangular image lattices. A 
more recently explored concept is the use of hexagonal 
pixels for image representation, introducing the area of 
hexagonal image processing. A prominent factor that 
merits the investigation of the hexagonal lattice as an 
alternative grid structure for image representation is its 
similarity to the human fovea. In order for humans to 
process visual input, the eye captures information that is 
directed to the retina located on the inner surface of the 
eye. A small region within the retina, known as the fovea 
and consisting of a high density of cones, is responsible 
for sharp vision capture and is comprised of cones that are 
shaped and placed in a hexagonal arrangement [4,7,10], as 
shown in Figure 1. This hexagonal mosaic provides the 
motivation to investigate an alternative grid structure for 
image representation other than rectangular.  

In addition to replicating the characteristics of the 
human eye, hexagonal grids have other advantages over 
the conventional rectangular grid. Equidistance of all pixel 
neighbours facilitates the implementation of circular 
symmetric kernels that is associated with an increase in 
accuracy when detecting edges, both straight and curved 
[2], and the improved accuracy of circular and near 
circular image processing operators has been 
demonstrated in [3]. Additionally, better spatial sampling 
efficiency is achieved by the hexagonal structure 
compared with a rectangular grid of similar pixel 
separation, leading to improved computational 
performance. In a hexagonal grid with unit separation of 

pixel centres, approximately 13% fewer pixels are 
required to represent the same image resolution as 
required on a rectangular grid with unit horizontal and 
vertical separation of pixel centres [14]. 

Our work is motivated by recent work that uses the 
hexagonal structure, including biologically inspired fovea 
modelling with neural networks that correspond to the 
hexagonal biological structure of photoreceptors [8], and 
the development of silicon retinas for robot vision [13]. 
Image representation in a hexagonal structure can be 
achieved currently through rectangular to hexagonal 
image conversion [16], though the emergence of genuine 
hexagonal-based sensor systems and image capture 
devices is essential for the benefits of hexagonal structure 
to be fully appreciated and exploited, and camera sensor 
manufacturers are starting to build cameras that 
approximate a hexagonally based sensor structure; for 
example, Fuji have developed the FujiFilm FinePix S3 
pro. 

In this paper, we present a novel approach to the 
design of hexagonal image processing operators, 
implementing the approach in [16] to obtain hexagonal 
images. In Section 2 we present our multi-scale operator 
design, with performance evaluation using simulated 
hexagonal images presented in Section 3. Section 4 
provides a summary and details of further work. 

2. Multi-scale hexagonal operator design 
We represent the hexagonal pixel-based image by 

using an array of samples of a continuous function  
of image intensity on a domain . Figure 2 represents 
hexagonal pixels with a node placed in the centre of each 
pixel. These nodes are the reference points for the 
computation of finite element techniques throughout the 
domain .  

 
Figure 1. Cross section of human retina showing 
the hexagonal structure of the photoreceptor 
cones densely packed in the fovea [4] 
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The multi-scale operators designed specifically for use 
on the image represented in Figure 2 are based on the use 
of a mesh, illustrated in Figure 3, consisting of equilateral 
triangular elements which overlays the pixel array shown 
in Figure 2.  
      With any node in the mesh, say node i, with co-
ordinates  we associate a piecewise linear basis 
function   which has the properties    
if  and   if , where  are the 
co-ordinates  of the nodal point .   is thus a "tent-
shaped" function with support restricted to a small 
neighbourhood centred on node  consisting of only those 
triangular elements that have node  as a vertex.  We then 
may approximately represent the image u over the 
neighbourhood  by a function  

 

in which the parameters  are mapped from the 
hexagonal image intensity values; thus the approximate 
image representation is a simple piecewise linear function 
on the triangular elements in the neighbourhood  and 
having intensity values  at nodes . 

 The operators are formulated such that they 
correspond to weak forms in the finite element method. 
As we are currently concerned only with first order 
derivative operators, a weak form of the first directional 
derivative   is obtained by multiplying the 
derivative term by a test function  and integrating 
on the image domain  to give , 
where   is the unit direction vector. This 
approach enables us to design our hexagonal operator 
using either a Cartesian coordinate system or the three 
axes of symmetry of the hexagon.  Our current operator 
design uses the Cartesian system as use of the three axes 
of symmetry introduces redundancy. However, the 
hexagonal coordinate system has advantages when applied 
to tasks such as rotation that involve a large degree of 
symmetry [15], and hence may be used in future work 

 In the finite element method a finite-dimensional 
subspace  is used for function approximation; in 
our design procedure  is defined by the finite element 
mesh in Figure 3. Our general design procedure 
incorporates a finite-dimensional test space  that 
explicitly embodies a scale parameter  and this test space 

 comprises a set of Gaussian basis functions 
 of the form 

 

 
Each test function is restricted to have support over the 
neighbourhood, centred on node .  In general the size of 

 may be explicitly related to the scale parameter  [12],  
as illustrated by the six-element and 24-element hexagonal 
neighbourhoods in Figure 4. The sets of test functions 

, , are then used in the weak forms of 
the first derivative, providing the functional          

. We should note that the 
integrals need to be computed only over the 
neighbourhood , rather than the entire image domain , 
since  has support restricted to . 

 To illustrate the implementation of the first order 
hexagonal operator, the general equilateral triangular 
element, as shown in Figure 5, will be used. Here one of 
the nodes  is a central node  of a neighbourhood. 
For example, the neighbourhood , in Figure 4(a) covers 
a set of 6 elements ; where a Gaussian basis function 

 is associated with the central node  which shares 
common support with the surrounding seven basis 
functions . Hence  needs to be computed over the 
six elements in the neighbourhood . Substituting the 
image representation into the functional  yields 

 

where  and    

and and  are the element integrals                 
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Figure 4. Hexagonal operator structures:         
(a) six-element neighbourhood;  (b) 24-element 
neighbourhood 
 

 
Figure 2.  Representation of a hexagonal image 

 

Figure 3. Mesh of equilateral  triangle elements 
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 and .            

In order to calculate and and , a local co-ordinate 
reference system for an equilateral triangle is introduced 
as illustrated in Figure 5, with co-ordinates  and  such 
that  and . A mapping of these 
global co-ordinates to local co-ordinates can be obtained 
by means of a co-ordinate transformation from  to  
defined by  and 
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me ê
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Figure 5. Local co-ordinate transformation 

3.  Comparative results 
To process and evaluate hexagonal pixel-based images 

we create an environment that simulates the use of a 
hexagonal image sensor.  We initially create hexagonal 
pixel-based images using clusters of rectangular sub-
pixels as in [16] in order to compare our proposed 
approach of multi-scale hexagonal gradient operators with 
other existing gradient operators that can be used directly 
on hexagonal pixel-based images, namely the modified 
Sobel and Prewitt hexagonal operators and the operator 
proposed by Davies [5]. Using these resampled hexagonal 
images, processing and evaluating can be implemented in 
a hexagonal environment, as illustrated in Figure 6.  

Hexagonal
image

Process the
hexagonal

image

Display the
hexagonal

image

Evaluate the
hexagonal

image
 

Figure 6. Processing hexagonal images 

In order to accurately measure the performance of 
hexagonal gradient operators, the well-known Figure of 
Merit technique [1] was modified to accommodate the use 
of hexagonal pixel-based images. Comparison was made 
directly on the simulated hexagonal images between the 
proposed hexagonal operators of size ,  and 

(denoted H3, H5 and H7 respectively) and with 
existing hexagonal Prewitt, Sobel and Davies operators 
(denoted as P, S and D respectively). The results presented 
in Figure 7 illustrate that our multi-scale approach is 
comparable with the existing hexagonal image processing 
operators. In particular, on the oriented and vertical edges, 
H3 provides improved results over the other equivalent 

 operators, with the larger scale operators (H5 and 
H7) performing significantly better in areas of high signal- 

 
to-noise ratio, as would be expected. 

For further comparison we provide edge maps for each 
of the hexagonal operators previously evaluated, using the 
clock image shown in Figure 8.  We obtain the hexagonal 
pixel-based images by re-sampling the original 
rectangular pixel-based image using   the   approach   of  
[16], and the edge maps are presented in Figure 8, where, 
for each operator, we have chosen the visually best edge 
map (at the given threshold of T). As expected from 
obtained FoM results in Figure 7, the performance of H3 
is comparable with the other 3x3 equivelent operators, 
where H5 and H7 demonstrate increased performance, in 
particular along the back edge of the clock. 

4. Summary 
The use of hexagonal pixel-based images has received 

(a) FoM computed on an oriented edge 600 

(b) FoM computed on a vertical edge 

(c) FoM computed on a curved edge 

       Figure 7. Figure of Merit results 
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much attention in recent years with respect to both image 
architecture and, to a lesser extent, processing.  Through 
the use of the finite element framework, we have 
presented a design procedure for multi-scale gradient 
operators developed explicitly for use on hexagonal pixel-
based images.  Using the Figure of Merit evaluation 
technique, we have demonstrated that the proposed 
operators detect edges more accurately than existing 
operators for processing hexagonal images, particularly in 
images with high signal-to-noise ratios; we have also 
illustrated satisfactory visual results via the use of a (re-
sampled) real image. Further work will entail extending 
the operator design procedure to encompass the spiral 
architecture in [11].  
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  (a) Original rectangular    

    pixel-based image 

 
(b) Hexagonal pixel-       
       based image 

 
 (c) Prewitt operator       

 
  (d) Sobel operator    

 
(e) Davies operator    

 
   (f) H3 operator 

 
    (g) H5 operator  

 
    (h) H7 operator  

Figure 8. Real images and edge maps 
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