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Abstract

This paper introduces recent methods for large scale
image search. State-of-the-art methods build on the
bag-of-features image representation. We first ana-
lyze bag-of-features in the framework of approzimate
nearest neighbor search. This shows the sub-optimality
of such a representation for matching descriptors and
leads us to derive a more precise representation based
on 1) Hamming embedding (HE) and 2) weak geomet-
ric consistency constraints (WGC). HE provides bi-
nary signatures that refine the matching based on vi-
sual words. WGC filters matching descriptors that are
not consistent in terms of angle and scale. HE and
WGC are integrated within an inverted file and are
efficiently exploited for all images, even in the case
of very large datasets. Experiments performed on a
dataset of million images show a significant improve-
ment due to the binary signature and the weak geomet-
ric consistency constraints, as well as their efficiency.
Estimation of the full geometric transformation, i.e.,
a re-ranking step on a short list of images, is comple-
mentary to our weak geometric consistency constraints
and allows to further improve the accuracy.

1 Introduction

We address the problem of searching for similar im-
ages in a large set. Similar images are defined as im-
ages of the same object or scene viewed under different
imaging conditions. Many previous approaches have
addressed the problem of matching such transformed
images [6, 8, 7, 15, 9]. They are in most cases based on
local invariant descriptors, and either match descrip-
tors between individual images or search for similar
descriptors in an efficient indexing structure. Various
approximate nearest neighbor search algorithms such
as kd-tree [6] or sparse coding with an over-complete
basis set [10] allow for fast search in small datasets.
The problem with these approaches is that all individ-
ual descriptors need to be compared to and stored.

In order to deal with large image datasets, Sivic and
Zisserman [15] introduced the bag-of-features (BOF)
image representation in the context of image search.
Descriptors are quantized into visual words with the
k-means algorithm. An image is then represented by
the frequency histogram of visual words obtained by
assigning each descriptor of the image to the closest
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visual word. Fast access to the frequency vectors is
obtained by an inverted file system. Note that this
approach is an approximation to the direct matching
of individual descriptors and somewhat decreases the
performance. It compares favorably in terms of mem-
ory usage against other approximate nearest neighbor
search algorithms, such as the popular Euclidean lo-
cality sensitive hashing (LSH) [1, 14]. LSH typically
requires 100-500 bytes per descriptor to index, which
is not tractable, as a one million image dataset typi-
cally produces up to 2 billion local descriptors.

Some recent extensions of the BOF approach speed
up the assignment of individual descriptors to visual
words [9, 11] or the search for frequency vectors [3, 2].
Others improve the discriminative power of the visual
words [13], in which case the entire dataset has to be
known in advance. It is also possible to increase the
performance by regularizing the neighborhood struc-
ture [3] or using multiple assignment of descriptors to
visual words [3, 12] at the cost of reduced efficiency.
Finally, post-processing with spatial verification, a re-
occurring technique in computer vision [6], improves
the retrieval performance. Such a post-processing is
evaluated in [11].

In this paper we present an approach complemen-
tary to those mentioned above. We make the distance
between visual word frequency vectors more significant
by using a more informative representation. Firstly,
we apply a Hamming embedding (HE) to the descrip-
tors by adding binary signatures which refine the vi-
sual words. The idea of using short binary codes was
recently proposed in [16] to compact global GIST de-
scriptors, and in [4] for SIFT descriptors. Secondly, we
integrate weak geometric consistency (WGC) within
the inverted file system which penalizes the descriptors
that are not consistent in terms of angle and scale. We
also use a-priori knowledge on the transformations for
further verification. This contribution can be viewed
as an answer to the question stated in [11] of how to
integrate geometrical information in the index for very
large datasets.

This paper is organized as follows. The interpreta-
tion of a BOF representation as an image voting sys-
tem is given in Section 2. Our contributions, HE and
WGC, are respectively described in sections 3 and 4.
Complexity issues of our approach in the context of an
inverted file system are discussed in Section 5. Finally,
Section 6 presents the experimental results.



2 Voting
features

interpretation of bag-of-

In this section, we show how image search based
on BOF can be interpreted as a voting system which
matches individual descriptors with an approximate
nearest neighbor (NN) search. We then evaluate BOF
from this point of view.

2.1 Voting approach

Given a query image represented by its local descrip-
tors y;» and a set of database images j, 1 < i < n, rep-
resented by its local descriptors z; ;, a voting system
can be summarized as follows:

1. Dataset images scores s; are initialized to 0.

2. For each query image descriptor y;; and for each
descriptor x; ; of the dataset, increase the score s;
of the corresponding image by

(1)

where f is a matching function that reflects the
similarity between descriptors z;; and y». In
many systems f(.,.) is based on e-search or k—NN
search.

Sj =5 + f(xi,jvyi’)v

3. The image score s = g;(s;) used for ranking is
obtained from the final s; by applying a post-
processing function g;. It can formally be written
as

S5 = 9j Z Z f(@ij,yir)

i/=1..m’ i=1..m;

(2)

The simplest choice for g; is the identity, which
leads to s7 = s;. In this case the score reflects the
number of matches between the query and each
database image. Note that this score counts pos-
sible multiple matches of a descriptor. Another
popular choice is to take into account the num-
ber of image descriptors, for example s} = s; /m;.
The score then reflects the rate of descriptors that
match.

2.2 Bag-of-features: voting and approxi-
mate NN interpretation

Bag-of-features (BOF) image search uses descriptor
quantization. A quantizer ¢ is formally a function

qg: RY [1, k]
r = q(x)

—

3)

that maps a descriptor z € R to an integer index. The
quantizer ¢ is often obtained by performing k-means
clustering on a learning set. The resulting centroids
are also referred to as visual words. The quantizer g(x)
is then the index of the centroid closest to the descrip-
tor x. Intuitively, two descriptors « and y which are
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close in descriptor space satisfy g(z) = ¢(y) with a high
probability. The matching function f; defined as

(4)

allows the efficient comparison of the descriptors based
on their quantized index. Injecting this matching func-
tion in (2) and normalizing the score by the number of
descriptors of both the query image and the dataset
image j, we obtain

1
m; m’ Z Z 511(3?7:,_7‘)7'1(%1') =

i/=1..m’ i=1..m;

fa(@,9) = b4(2).9(0)

/ .
my my,;

m' m;’

()
where m; and m; ; denote the numbers of descriptors,
for the query and the dataset image j, respectively,
that are assigned to the visual word [. In this equation,
the normalizing value m’ does not affect the ordering
of the dataset images. Note that these scores corre-
spond to the inner product between two BOF vectors.
They are computed very efficiently using an inverted
file, which exploits the sparsity of the BOF, i.e., the
fact that dy(z, ;).q(y,) = 0 for most of the (i,j,i) tu-
ples.

At this point, these scores do not take into account
the tf-idf weighting scheme (see [15] for details), which
weights the visual words according to their frequency:
rare visual words are assumed to be more discrimina-
tive and are assigned higher weights. In this case the
matching function f can be defined as

ez, y) = (tHdf (0(1)))? Og2),a00)» (6)

such that the tf-idf weight associated with the visual
word considered is applied to both the query and the
dataset image in the BOF inner product. Using this
new matching function, the image scores s; become
identical to the BOF similarity measure used in [15].
This voting scheme normalizes the number of votes by
the number of descriptors (L7 normalization). In what
follows, we will use the Lo normalization instead. For
large vocabularies, the Lo norm of a BOF is very close
to the square root of the L; norm. In the context
of a voting system, the division of the score by the
Ly norm is very similar to s7 = s;/y/Mj, which is a
compromise between measuring the number and the
rate of descriptor matches.

*
57 = E

I=1..k

2.3 Weakness of quantization-based ap-
proaches

Image search based on BOF combines the advan-
tages of local features and of efficient image compari-
son using inverted files. However, the quantizer reduces
significantly the discriminative power of the local de-
scriptors. Two descriptors are assumed to match if
they are assigned the same quantization index, i.e., if
they lie in the same Voronoi cell. Choosing the number
of centroids k is a compromise between the quantiza-
tion noise and the descriptor noise.

Fig. 1(b) shows that a low value of k leads to large
Voronoi cells: the probability that a noisy version of



Figure 1: Illustration of k-means clustering and our binary signature. (a) Fine clustering. (b) Low k and binary
signature: the similarity search within a Voronoi cell is based on the Hamming distance. Legend: -=centroid,

o=descriptor, x=noisy versions of this descriptor.

a descriptor belongs to the correct cell is high. How-
ever, this also reduces the discriminative power of the
descriptor: different descriptors lie in the same cell.
Conversely, a high value of k provides good precision
for the descriptor, but the probability that a noisy ver-
sion of the descriptor is assigned to the same cell is
lower, as illustrated in Fig. 1(a).

We measure the quality of the approximate near-
est neighbor search performed by BOF in terms of the
trade-off between

o the average recall for the ground truth nearest
neighbor

o and the average rate of vectors that match in the
dataset.

Clearly, a good approximate nearest neighbor search
algorithm is expected to make the nearest neighbor
vote with high probability, and at the same time ar-
bitrary vectors vote with low probability. In BOF, the
trade-off between these two quantities is managed by
the number £ of clusters.

For the evaluation, we have used an approximate
nearest neighbor evaluation set. It has been generated
using the affine covariant features [8] and the SIFT de-
scriptor [6]. A one million vector set to be searched and
a test query set of 10000 vectors has been constructed.
All these vectors have been extracted from the INRIA
Holidays image dataset described in Section 6.

One can see in Fig. 2 that the performance of BOF
as an approximate nearest neighbor search algorithm is
of reasonable accuracy: for k = 1000, the NN recall is
of 45% and the proportion of the dataset points which
are retrieved is of 0.1%. One key advantage of BOF is
that its memory usage is much lower than concurrent
approximate nearest neighbor search algorithms. For
instance, with 20 hash functions the memory usage of
LSH [1] is of 160 bytes per descriptors compared to
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Figure 2: Approximate nearest neighbor search ac-
curacy of BOF (dashed) and Hamming Embedding
(plain) for different numbers of clusters k and Ham-
ming thresholds h;.

about 4 bytes for BOF. In next section, we will com-
ment on the other curves of Fig. 2, which provide a
much better performance than standard BOF.

3 Hamming embedding of local image
descriptors

In this section, we present an approach which com-
bines the advantages of a coarse quantizer (low num-
ber of centroids k) with those of a fine quantizer
(high k). Tt consists in refining the quantized index
q(z;) with a dp-dimensional binary signature b(z;)
(b1(x4), ..., ba,(x;)) that encodes the localization of the
descriptor within the Voronoi cell, see Fig. 1(b). It is



designed so that the Hamming distance

hb(2).b@) = D 1= 8w

1<i<dp

(7)

between two descriptors x and y lying in the same cell
reflects the Euclidean distance d(z,y). The mapping
from the Euclidean space into the Hamming space, re-
ferred to as Hamming Embedding (HE), should ensure
that the Hamming distance h between a descriptor and
its NNs in the Euclidean space is small.

Note that this significantly different from the Eu-
clidean version of LSH (E2LSH) [1, 14], which produces
several hash keys per descriptor. In contrast, HE im-
plicitly defines a single partitioning of the feature space
and uses the Hamming metric between signatures in
the embedded space.

We propose in the following a binary signature gen-
eration procedure. We distinguish between 1) the off-
line learning procedure, which is performed on a learn-
ing dataset and generates a set of fixed values, and
2) the binary signature computation itself. The offline
procedure is performed as follows:

1. Random matrix generation: A d; x d orthog-
onal projection matrix P is generated. We ran-
domly draw a matrix of Gaussian values and apply
a QR factorization to it. The first dj, rows of the
orthogonal matrix obtained by this decomposition
form the matrix P.

2. Descriptor projection and assignment: A
large set of descriptors z; from an independent
dataset is projected using P. These descriptors
(2i15 ..., 2id, ) are assigned to their closest centroid

q(x;).

3. Median values of projected descriptors: For
each centroid [ and each projected component
h =1,...,dy,, we compute the median value 7,
of the set {z;n|q(x;) =} that corresponds to the
descriptors assigned to the cell [.

The fixed projection matrix P and k X d, median
values 75, ; are used to perform the HE of a given de-
scriptor x by:

1. Assigning x to its closest centroid, resulting in
q(x).

2. Projecting = using P, which produces a vector
z=Px=(z1,...,2a4,).

3. Computing the signature
b(x) = (b1(x),...,bq,(x)) as
b( ) - 1 if Zi >Tq(m),ia

=1 0 otherwise.

(®)
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Figure 3: HE filtering effect on the descriptors within
a cell and on the 5 NNs: trade-off between the rate of
cell descriptors and the rate of NN that are retrieved
for d, = 64.

At this point, a descriptor is represented by ¢(x) and
b(x). We can now define the HE matching function as

tf-idf(q(x))  if g(z) = q(y) and
fue(z,y) = h(b(z),b(y)) <h:  (9)
0 otherwise

where h is the Hamming distance defined in Eqn. 7 and
h: is a fixed Hamming threshold such that 0 < hy < dp.
It has to be sufficiently high to ensure that the Eu-
clidean NNs of x match, and sufficiently low to filter
many points that lie in a distant region of the Voronoi
cell. Fig. 3 and 4 depict this compromise. These plots
have been generated by analyzing a set of 1000 descrip-
tors assigned to the same centroid. Given a descriptor
r we compare the rate of descriptors that are retrieved
by the matching function to the rate of 5-NN that are
retrieved.

Fig. 3 shows that the choice of an appropriate
threshold h; (here between 20 and 28) ensures that
most of the cell’s descriptors are filtered and that the
descriptor’s NNs are preserved with a high probability.
For instance, setting h; = 22 filters about 97% of the
descriptors while preserving 53% of the 5-NN. A higher
value hy = 28 keeps 94% of the 5-NN and filters 77%
of the cell descriptors. Fig. 4 represents this trade-
off for different binary signature lengths. Clearly, the
longer the binary signature dj, the better the HE fil-
tering quality. In the following, we have fixed d; = 64,
which is a good compromise between HE accuracy and
memory usage (8 bytes per signature).

The comparison with standard BOF shows that
the approximate nearest neighbor search performed by
BOF+HE is much better. This is confirmed by the
quantitative evaluation of Fig. 2. Using HE for the
same number of vectors that are retrieved increases the
probability that the NN is among these voting vectors.
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Figure 4: HE: filtering effect on the descriptors within
a cell and on the 5 NNs: impact of the number of bits
dp of the binary signature length.

4 Large-scale geometric consistency

BOF based image search ranks the database images
without exploiting geometric information. Accuracy
may be improved by adding a re-ranking stage [11]
that computes a geometric transformation between the
query and a shortlist of dataset images returned by the
BOF search. To obtain an efficient and robust estima-
tion of this transformation, the model is often kept as
simple as possible [6, 11]. In [6] an affine 2D trans-
formation is estimated in two stages. First, a Hough
scheme estimates a transformation with 4 degrees of
freedom. Each pair of matching regions generates a set
of parameters that “vote” in a 4D histogram. In a sec-
ond stage, the sets of matches from the largest bins are
used to estimate a finer 2D affine transform. In [11]
further efficiency is obtained by a simplified parameter
estimation and an approximate local descriptor match-
ing scheme.

Despite these optimizations, existing geometric
matching algorithms are costly and cannot reasonably
be applied to more than a few hundred images. In this
section, we propose to exploit weak, i.e., partial, ge-
ometrical information without explicitly estimating a
transformation mapping the points from an image to
another. The method is integrated into the inverted
file and can efficiently be applied to all images. Our
weak geometric consistency constraints refine the vot-
ing score and make the description more discriminant.
Note that a re-ranking stage [11] can, in addition, be
applied on a shortlist to estimate the full geometric
transformation. It is complementary to the weak con-
sistency constraints (see Section 6).
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Figure 5: Orientation consistency. Top-left: Query im-
age and its interest points. Top-right: an image of the
same location viewed under an image rotation. The
slices in the right top image show for each matched in-
terest point the difference between the estimated domi-
nant orientations of the query image and the image it-
self. Bottom: Histogram of the differences between the
dominant orientations of matching points. The peak
clearly corresponds to the global angle variation.

4.1 Variations of geometrical characteris-
tics: analysis

In order to obtain orientation and scale invariance,
region of interest detectors extract the dominant orien-
tation of the region [6] and its characteristic scale [5].
This extraction is performed independently for each in-
terest point. When an image undergoes a rotation or
scale change, these quantities are consistently modified
for all points, see Fig 5 for an illustration in case of im-
age rotation. It shows the difference of the dominant
orientations for individual matching regions. We can
observe that only the incorrect matches are not consis-
tent with the global image rotation. This is confirmed
by the histograms over the angle differences which il-
lustrate the additional filtering effect of the weak ge-
ometric consistency constraints explained in next sub-
section. Similarly, the characteristic scales of interest
points are consistently scaled between two images of
the same scene or object.

4.2 Weak geometrical consistency

The key idea of our method is to verify the consis-
tency of the angle and scale parameters for the set of
matching descriptors of a given image. We build upon
and extend the BOF formalism of (1) by using several
scores s; per image. For a given image j, the entity



s; then represents the histogram of the angle and scale
differences, obtained from angle and scale parameters
of the interest regions of corresponding descriptors. Al-
though these two parameters are not sufficient to map
the points from one image to another, they can be used
to improve the image ranking produced by the inverted
file. This is obtained by modifying the update step
of (1) as follows:

5j(0a,0s) = 5;(0a,0s) + f(xij, yir), (10)

where §, and &4 are the quantized angle and log-scale

differences between the interest regions. The image
score becomes
* — .
si=g <(gr:%>é< sj(éa,55)> . (11)

The motivation behind the scores of (11) is to use
angle and scale information to reduce the scores of the
images for which the points are not transformed by
consistent angles and scales. Conversely, a set of points
consistently transformed will accumulate its votes in
the same histogram bin, resulting in a high score.

Experimentally, the quantities d, and Js; have the
desirable property of being largely independent: com-
puting separate histograms for angle and scale is as
precise as computing the full 2D histogram of (10). In
this case two histograms s§ and sj are separately up-
dated by
54(6a) == 55(6a) + f(@ij,yir), (12)
CH bs) = 3;(58) + f@ig yir)-

The two histograms can be seen as marginal proba-
bilities of the 2D histogram. Therefore, the final score

si=g <min (rr(lszjx 55 (0a)s max sj(55)>) (13)
is a reasonable estimate of the maximum of (11). This
approximation will be used in the following. It sig-
nificantly reduces the memory and CPU requirements.
In practice, the histograms are smoothed by a moving
average to reduce the angle and log-scale quantization
artifacts. Note that the translation could be theoreti-
cally included in WGC. However, for a large number of
images, the number of parameters should be in fewer
than 2 dimensions, otherwise the memory and CPU
costs of obtaining the scores would not be tractable.

4.3 Injecting a priori knowledge

Fig. 6(a) shows that the repartition of angle dif-
ferences J, between matched descriptors is differ-
ent for corresponding and non-corresponding point
pairs. The shallow peaks on multiples of 7/2 for non-
corresponding points are due to the higher frequency
of horizontal and vertical gradients in photos. The
probability mass function of angle differences for cor-
responding points follows a highly non-uniform repar-
tition. This is due to the human tendency to shoot
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Figure 6: Histogram of §, values accumulated over all
query images of the Holidays dataset. Correspond-
ing pairs are geometrically verified matching points be-
tween corresponding images. Non-corresponding pairs
are HE-filtered point matches with non-corresponding
images.

either in “portrait” or “landscape” mode. A similar
bias is observed for d5: image pairs with the same scale
(65 = 0) are more frequent.

The orientation and scale priors are used to weight
the entries of our histograms before extracting their
maxima. We have designed two different orientation
priors: “same orientation” for image datasets known to
be shot with the same orientation and “+m/2 rotation”
for sets including non-straightened shots.

5 Complexity

Both HE and WGC are integrated in the inverted
file. This structure is usually implemented as an array
that associates a list of entries with each visual word.
Each entry contains a database image identifier and the
number of descriptors of this image assigned to this
visual word. The tf-idf weights and the BOF vector
norms can be stored separately. The search consists in
iterating over the entries corresponding to the visual
words in the query image and in updating the scores
accordingly.

An alternative implementation consists in storing
one entry per descriptor in the inverted list correspond-
ing to a visual word instead of one entry per image.
This is almost equivalent for very large vocabularies,
because in this case multiple occurrences of a visual
word on an image are rare, i.e., it is not necessary to
store the number of occurrences. In our experiments,
the overall memory usage was not noticeably changed
by this implementation. This implementation is re-
quired by HE and WGC, because additional informa-
tion is stored per local descriptor.

HE impact on the complexity: For each inverted
file entry, we compute the Hamming distance between



Table 1: Inverted file memory usage.

bits WGC HE WGCH+HE
image id 21 X X X
orientation 6 X X
log-scale 5 X X
binary signature 64 X X
total bytes per entry: 4 11 12

the signature of the query and that of the database
entry. This is done efficiently with a binary xor oper-
ation. Entries with a distance above h; are rejected,
which avoids the update of image scores for these en-
tries. Note that this occurs for a fair rate of entries, as
shown in Fig. 3.

WGC impact on the complexity: WGC modi-
fies the score update by applying (12) instead of (1).
Hence, two bins are updated, instead of one for a stan-
dard inverted file. The score aggregation as well as
histogram smoothing have negligible computing costs.
With the tested parameters, see Table 1, the mem-
ory usage of the histogram scores is 128 floating point
values per image, which is small compared with the
inverted lists.

Runtime: All experiments were carried out on
2.6 GHz quad-core computers. As the new inverted
file contains more information, we carefully designed
the size of the entries to fit a maximum 12 bytes per
point, as shown in Table 1.

Table 2 summarizes the average query time for a
one million image dataset. We observe that the binary
signature of HE has a negligible computational cost.
Due to the high rate of zero components of the BOF
for a visual vocabulary of k = 200000, the search is
faster. Surprisingly, HE reduces the inverted file query
time. This is because the Hamming distance compu-
tation and thresholding is cheaper than updating the
scores. WGC reduces the speed, mostly because the
histograms do not fit in cache memory and their mem-
ory access pattern is almost random. Most interest-
ingly the search time of HE + WGC is comparable to
the inverted file baseline. Note that for £ = 200000
visual words, the assignment uses a fast approximate
nearest neighbor search, i.e., the computation is not
ten times slower than for & = 20000, which here uses
exhaustive search.

6 Experiments
6.1 Datasets and image description

Datasets and evaluation criterion. We perform
our experiments on two annotated datasets: the
Holidays dataset [4], see Fig. 9, and the Oxfordbk
dataset [11]. To evaluate large scale image search we
also introduce a distractor dataset downloaded from
Flickr. For evaluation we use mean average precision
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Table 2: Query time per image for a quad-core
(Flickr1M dataset)

k = 20000 k= 200000
compute descriptors 0.88 s
quant. + bin. sig. 0.36 s 0.60 s
search, baseline 2.74 s 0.62 s
search, WGC 10.19 s 211 s
search, HE 1.16 s 0.20 s
search, HE+WGC 1.82s 0.65 s

(mAP) [11], i.e., for each query image we obtain a pre-
cision/recall curve, compute its average precision and
then take the mean value over the set of queries. In
detail:

The Holidays dataset mainly contains personal holi-
day photos. The remaining ones were taken on purpose
to test the robustness to various transformations: ro-
tations, viewpoint and illumination changes, blurring,
etc. The dataset includes a very large variety of scene
types (natural, man-made, water and fire effects, etc)
and images are of high resolution. The dataset contains
500 image groups, each of which represents a distinct
scene or object. The first image of each group is the
query image and the correct retrieval results are the
other images of the group.

The Ozford5k dataset contains images of Oxford
buildings. All the dataset images are in “upright” ori-
entation because they are displayed on the web.

The Flickr60k and FlickriM datasets contain arbi-
trary images from Flickr. Flickr60k is used to learn the
quantization centroids and the HE parameters (median
values). For these tasks we have used respectively 5M
and 140M descriptors. Flickr1M are distractor images
for large scale image search.

Image description. Descriptors are obtained by the
Hessian-Affine detector [8] and the SIFT descriptor [6].
Clustering is performed with k-means on the indepen-
dent Flickr60k dataset. The number of clusters is spec-
ified for each experiment.

Impact of the clustering learning set. Learning
the visual vocabulary on a distinct dataset shows more
accurately the behavior of the search in very large im-
age datasets, for which 1) query descriptors represent a
negligible part of the total number of descriptors, and
2) the number of visual words represents a negligible
fraction of the total number of descriptors. This is con-
firmed by comparing our results on Oxford to the ones
of [11], where clustering is performed on the evaluation
set. In our case, i.e., for a distinct visual vocabulary,
the improvement between a small and large k is signif-
icantly reduced when compared to [11], see first row of
Table 3.



Table 3: Results for Holidays and Oxford datasets. mAP scores for the baseline, HE, WGC and HE4+WGC. Angle
prior: same orientation for Ozford, 0,7/2,m and 37/2 rotations for Holidays. Vocabularies are generated on the

independent Flickr60K dataset.

Parameters Holidays Oxford

HE: hy WGC k =20000 k= 200000 | kK =20000 k& = 200000
baseline 0.4463 0.5488 0.3854 0.3950
HE 20 0.7268 0.7093 0.4798 0.4503
HE 22 0.7181 0.7074 0.4892 0.4571
HE 24 0.6947 0.7115 0.4906 0.4585
HE 26 0.6649 0.6879 0.4794 0.4624
WGC no prior 0.5996 0.6116 0.3749 0.3833
WGC with prior 0.6446 0.6859 0.4375 0.4602
HE+WGC 20 with prior 0.7391 0.7328 0.5442 0.5096
HE+WGC 22 with prior 0.7463 0.7382 0.5472 0.5217
HE+WGC 24 with prior 0.7507 0.7439 0.5397 0.5252
HE+WGC 26 with prior 0.7383 0.7404 0.5253 0.5275

mAP
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Figure 7: Performance of the image search as a function of the dataset size for BOF, WGC, HE (h; = 22),
WGC+HE, and WGCHHE+re-ranking with a full geometrical verification (shortlist of 100 images). The dataset
is Holidays with a varying number of distractors from FlickriM.

6.2 Evaluation of HE and WGC

INRIA Holidays and Oxford building datasets:
Table 3 compares the proposed methods with the stan-
dard BOF baseline. We can observe that both HE and
WGC result in significant improvements. Most impor-
tantly, these approaches are complementary, as it is
shown that the combination of the two further increases
the performance.

Large scale experiments: Fig. 7 shows an evalua-
tion of the different approaches for large datasets, i.e.,
we combined the Holidays dataset with a varying num-
ber of images from the 1M Flickr dataset. We clearly
see that the gain of the variant WGC + HE is very sig-
nificant. In the case of WGC + HE the corresponding
curves degrade less rapidly when the number of images
in the database increases.
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Results for various queries are presented in Fig. 9.
The first and second rows show that some images from
the Flickr1M dataset artificially decrease the results in
terms of mAP given in Fig. 7, as false false positive,
marked by FFP, are some images which are actually
relevant to the query image. We can observe in figure 8
that HE and WGC improve the quality of the ranking
significantly for the given queries.

Table 4 measures the improvement of the ranking.
It gives the rate of true positives that are in a shortlist
of 100 images. For a dataset of one million images,
the baseline only returns 31% of the true positives,
against 62% for HE+WGC. This reflects the quality
of the shortlist that will be considered in a re-ranking
stage.

Re-ranking: The re-ranking is based on the estima-



Table 4: Holidays dataset + FlickriM: Rate of true
positives as a function of the dataset size for a shortlist
of 100 images, k = 200000.

dataset size 991 10991 100991 1000991
BOF 0.673 0.557 0.431 0.306
WGC+HE 0.855 0.789 0.708 0.618

tion of an affine transformation with our implementa-
tion of [6]. Fig. 7 also shows the results obtained with
a shortlist of 100 images. We can observe further im-
provement, which confirms the complementary of this
step with WGC.

7 Conclusion

This paper has introduced two ways of improving
a standard bag-of-features representation. The first
one is based on a Hamming embedding which provides
binary signatures that refine visual words. It results
in a similarity measure for descriptors assigned to the
same visual word. The second is a method that en-
forces weak geometric consistency constraints and uses
a priori knowledge on the geometrical transformation.
These constraints are integrated within the inverted
file and are used for all the dataset images. Both these
methods improve the performance significantly, espe-
cially for large datasets. Interestingly, our modifica-
tions do not result in an increase of the runtime.
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Figure 8: Two queries from the Holidays dataset and the ranks obtained with different methods (BOF, WGC,
HE, HE4+WGC, re-ranked) for two true positives. The database is Holidays + 1M. Note that in the first row the
“easiest” true positive is not shown.
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Figure 9: Queries from the Holidays dataset and some corresponding results for Holidays+1M distractors from
Flickr1M. True positives are marked by TP and false positives by FP. As the Holidays dataset includes pictures of
popular tourist attractions, matches were also found in the distractor dataset. They count as false positives and
are marked by FFP (false false positive).
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