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Abstract

Recent years have seen a lot of work on local descrip-

tors. In all published comparisons or evaluations, the

now quite well-known SIFT-descriptor has been one of

the top performers. For the application of object pose

estimation, one comparison showed a local descriptor,

called the Patch-Duplet, of equal or better performance

than SIFT. This paper examines different properties

of those two descriptors by forming hybrids between

them and extending the object pose tests of the orig-

inal Patch-Duplet paper. All tests use real images.

1 Introduction

Object pose estimation, or estimation of the 6
degree-of-freedom geometrical state of one or more ob-
jects from a single 2D image is an important problem
that has received considerable attention over the years
[20, 16, 19, 9]. Applications include industrial automa-
tion such as bin picking (see figure 1), support systems
for augmented reality as well as a whole range of con-
sumer products including toys and house-hold appli-
ances.

Figure 1: Bin picking.

The local features typ-
ically used in view-based
pose estimation have previ-
ously been evaluated for the
purposes of view matching,
and object recognition. In
such evaluations, computa-
tion can be divided into three
steps: detection of interest
points, descriptor construc-

tion, and descriptor matching

[5].
A pose estimation system,

by necessity, has to contain
two additional steps: pose hypothesis generation,
and pose clustering [20, 9]. This justifies the need
for specific evaluation of local features in the pose
estimation framework.

1.1 Related Research

Evaluation of interest point detectors and local
descriptors have previously been done on the wide-
baseline stereo task [13, 5, 14], and in the setting of

recognition of objects or object class [12, 15]. The
object pose estimation problem is however sufficiently
different from wide baseline stereo and general object
recognition to require a separate feature evaluation. In
object recognition and wide baseline stereo, view in-
variance for features is a good thing. In the object
pose estimation application it is on the other hand im-
portant that a descriptor can be distinguished within a
large database of descriptors, many of which were gen-
erated from visually similar image patches. In other
words, the features need to be view specific if they are
to tell one view from another. For this reason it is not
obvious that a pose estimation evaluation will rank lo-
cal descriptors in the same way as wide-baseline and
object recognition tests.

All published comparisons or evaluations show the
now quite well-known SIFT-descriptor to be one of
the top performers. In the object pose estimation test
published in [8] results were slightly different, showing
SIFT [11] being outperformed by the local descriptor
introduced in that paper called the Patch-Duplet.
We will examine that claim once again and also try
to evaluate what the two descriptors’ strengths and
weaknesses are.

1.2 Contributions

The contribution of this work is an extention of the
tests found in [8] with an additional sequence of pose
estimation under light setting changes on hybrids be-
tween the two local descriptors in [8] to work out how
we might improve SIFT or the Patch-Duplet in the set-
ting of object pose estimation.

2 Pose Estimation Framework

This presentation uses a match–vote–cluster scheme
for performing view-based pose estimation. The ap-
proach is common in the literature [9, 8, 6].

When estimating an object pose from local image
features, it is convenient to use this coordinate rep-
resentation, E = (x y Δα Δs φ θ)

T
, which we refer

to as estimation coordinates. Two degrees-of-freedoms
(DOF) can be determined from the image plane loca-
tion of the object (x, y). Another two DOFs are given
by the relative image plane rotation (Δα), and the rel-
ative scale change (Δs), both in relation to a reference
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Figure 2: An object sampled over the two pose angles.

view. The two remaining DOFs are represented by the
two object rotation angles (φ, θ), see figure 2. We will
in this presentation refer to these angles as pose angles.

The system is trained using a set of real images of an
object sampled from pose angles. It can be argued that
the more physical state attributes the method/system
is invariant to, the fewer samples are needed. The fea-
tures we use are invariant to position, image plane rota-
tion and to some extent scale. We therefore only need
to sample images in 10◦ steps of the two pose angles φ
and θ, see figure 2.

Collecting and storing data in this manner for later
use in e.g. interpolation, is known as lazy learning or
memory based learning [1]. Interestingly, the human vi-
sion system also appears to work as if it used database
look-up functions when recognizing objects [4].

During training, the system does the following for
each training image:
1) Detect interest points (IP). 2) Extract local descrip-
tors. 3) Store each descriptor together with auxiliary

information.
In the case of the SIFT descriptor the auxiliary in-

formation consists of the pose angles (φ, θ) the posi-
tion in the image where the IP was found (x, y), the
scale where it was found (s), and the reference direction
specified by the SIFT descriptor (α).

Once the system has been trained, we want to use
it to estimate the geometrical state of an object (rep-
resented by the estimation coordinates). The whole
estimation procedure is illustrated in figure 3, and can
briefly be described according to:
1) Detect IPs. 2) Extract descriptors. 3) Find the k
most similar features in the database. 4) Retrieve the
pose angles from the auxiliary information. 5) Com-
pute the rest of the pose estimate using the fea-
ture location and scale, and the auxiliary information.
6) Cluster in the 6 dimensional vote space (where the
estimation coordinates live) to find the most likely pose
estimate.

The last step is the same for all methods in this
presentation. To find local density peaks in this space
and estimate a mean of such a peak, or cluster, mean-
shift clustering [3] is used. Mean shift clustering out-
puts a cluster density value Di for each cluster, with
Di ≥ Di+1 and from these we compute a certainty
measure c ∈ [0, 1], as c = 1 − D2/D1. A high c value
signifies that the highest peak D1 in the pose estimate
density is well above the second highest D2, and is thus
most likely the correct one. This approach is quite com-
mon in the literature, see e.g. [9, 8, 19, 6]. Please refer
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Figure 3: Overview of the query mode.

to [8] for more details on the pose estimation.

3 Local Descriptors

3.1 Patch-Duplets (PD)

The Patch-Duplet [8], referred to as PD, uses a sub-
pixel Harris detector for IP detection. It extracts IPs
and descriptors at two resolutions of the input image.
This method forms pairs between each IP and its four
closest IPs.

The patch-duplet uses a descriptor computed from
the double angle (DA) representation [7] of the local
orientation in box-shaped area around each IP. The
idea behind this representation is that intensity steps
from dark to light or light to dark will produce the same
orientation vector. Ordinary vector fields are converted
to DA representation by multiplying vector direction
angles by 2 and clamping to [0, 360].

The connection of two IPs gives both an orientation
for the boxes as well as a size for the area which de-
pends on the distance between the IPs. Duplets use the
distance between its two points to recover scale. Ro-
tation and position of the object uses the center point
on the line connecting the two IPs in the duplet.

3.2 SIFT

A very good and detailed presentation of the scale
invariant feature transform can be found in [11]. For
details on how SIFT is used in pose estimation, see sec-
tion 2. We used the implementation provided at [10].

3.3 Hybrids

The two descriptors above are different in a num-
ber of ways so we decided to implement some hybrid
versions to find if any specific difference is of specific
importance. In this work we focus on the descriptors,
so we decided to use the same IP detectors for all our
new hybrids. The versions are based upon code found
at [17]. In table 1 we show the different versions, in-
cluding our new ones (bold text) and the previous pub-
lished descriptors, that use DoG for IP detection.

Converting SIFT to the DA representation is done
by forming the orientation histogram of the descriptor
from an underlaying orientation in DA representation.
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Table 1: Descriptors using DoG as detector.

#IP 360◦ angle Double-angle representation
1 SIFT [11] Patch-singlet (PS),

DA-SIFT (DAS)
2 SIFT-duplets Patch-duplet (PDDoG),

(SIFTD) DA-SIFT-duplets (DASD)

To keep the angular resolution of the orientation bins
in the SIFT histogram we halved the number of ori-
entation bins since one interpretation is that the DA
representation only uses angles between 0 and 180 de-
grees.

Converting SIFT to a duplet is not entirely novel,
in [2] local invariant frames where formed by a number
of points before the extraction of SIFT descriptors. In
our application we do with-out affine transformations
since the information needed is actually in the shape of
the detected region [18], it is what descriminates one
pose angle from an other.

Connection of the two DoG IPs in the new SIFT-
duplets and the new Patch-Duplet is done only from
finer to coarser scale to make sure that the second IP
in the descriptor has a high probablility of existing if
the first one does. Besides this ordering of IPs, the
DoG detected scale is discarded and scale is detected
as for the Patch-Duplets, i.e. by changes in the dis-
tance between the two IPs. Orientation for each of
the two descriptors in the duplet is the same and is
set by the line connecting the two IPs and thus there
is no need to calculate the descriptor orienation as in
the original SIFT formulation. For an easy comparison
between descriptors, we shortened the orientation his-
togram to 4 bins for SIFTD, thus halving the orienta-
tion histogram resolution. This gives the same descrip-
tor vector length as for SIFT. Sampling of the DoG-
based Patch-Duplet descriptor is done from different
layers in the scale pyramid depending on descriptor
area, which in turn depends on the distance between
IPs of the duplet.

The Patch-Singlet extracts a single part, i.e. half,
of the Patch-Duplet descriptor at the orientation and
scale found by the DoG detector. The area size of the
extracted descriptor is given by

R = 1.4nvσ02
1+s/S (1)

where nv is the number of vectors in each spatial di-
rection, σ0 and S is set in the DoG detector and s is
the scale at which the IP is detected, see [11] and [8].

3.4 Descriptor size

Besides the performance, it is also of interest to com-
pare the number of elements in each descriptor, see
table 2. A larger descriptor means more storage re-
quirements, and thus, at equal performance, a smaller
descriptor is usually preferred.

Table 2: Number of elements in each descriptor.

32 PS
64 DAS, PD, PDDoG
128 DASD, SIFT, SIFTD

4 Pose Estimation Experiment

The new test in this work uses a view sampling as
in figure 2, with three light settings of the object seen
in the example images (one from each light setting) in
figure 4. In this test we trained for each light setting
and then evaluated on the two other light settings. The
evaluation is done using real images of the object in
figure 4 with both black background and with cluttered
background (middle image in figure 4).

All learning used 10◦ intervals for both the pose an-
gles. The evaluation is then done at the sample po-
sitions in-between, yielding a worst-case in regards to
geometric image distortions from the training images
to the evaluation images. This gives 95 training views
and 72 evaluation views per light setting. The test is
performed both without a background, which is simi-
lar to having objects on a conveyor belt in a factory,
and with a heavily cluttered background. Thus each
background setting uses 432 evaluation poses/images.

Each evaluation view is subjected to a random scal-
ing between 1.3 and 0.7 as well as a random image
plane rotation between −180◦ and 180◦. For all scale
values, downsampling from the original high resolution
images is used. All interpolations are done by bi-cubic
interpolation. The vector of random scaling and rota-
tion for each view was created once and then reused
for all descriptors. This ensures a fair comparison.

The error values presented in the experiment results
are distances between estimates and ground-truth. The
two pose angles are combined into a vector on the
unit sphere so only one value is presented. The error
value is given in degrees by the space angle between
the ground-truth vector and the measured pose angles
vector. Scale error is linear. In the same plot as the
object state values, we show the measure of certainty.

4.1 Results

The results from experiments on black background
can be seen in figure 5. They are somewhat different
than those reported in [8], SIFT slightly outperforms
PD in this test. We see that the hybrid versions all
improve on those results, with the DA version of the
SIFT duplet being the strongest performer if looking
at the boxplots. However taking the number of outliers
found on the right of each plot into account, PDDoG

Figure 4: Ambient, left, and right illumination.
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should be considered an equal performer. We also see
that PS is not doing well compared to the other ones.
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Figure 5: Error values for black background.

Results for the test with cluttered background can
be found in figure 6. Again, the results are not quite
what was shown in [8], even though the difference be-
tween SIFT and PD is quite small.The hybrid versions
all show better performance than the original descrip-
tors. We see that in this case, PDDoG is the best
performer both in accuracy and in the number of out-
liers which is very important for the robustness of a
fully automatic system.
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Figure 6: Error values for cluttered background.

The certainty measures show us that all the hybrids
form a tighter cluster in the voting space.

5 Concluding remarks

DoG-based duplets were found to produce by far the
most descriptors followed by PD and then the DoG
singlets. The ordering was the same for black back-
ground as for cluttered background. Also measuring
the number of descriptors in the winning cluster and

normalizing by number of descriptors found on the ob-
ject (i.e. from the black background test) showed the
highest percentage for PD, followed by SIFT/DAS and
then the DoG-based duplets and last PS for both black
and cluttered background. This seems to suggest that
most of the performance gain for the DoG-based du-
plets comes from the more numerous descriptors for
those methods.

We have seen that the new hybrids can improve the
performance of a pose estimation system. Robustness
can also be increased by reducing the number of out-
liers in pose estimates which is very important in a
bin-picking application since it will reduce damage on
the system and unneccessary stops.
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