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Abstract 

In this paper, we propose a novel self image rectifica-
tion algorithm for uncalibrated stereo video sequences. 
Different from conventional stereo systems, this algorithm 
performs adaptive calibration that allows unequal mo-
tions and zooming effects in both cameras. For the first 
stereo frame, we estimate a reduced set of camera para-
meters through a nonlinear optimization process to 
minimize the geometric errors of the corresponding 
points in pre-rectified image coordinates. For the subse-
quent frames, these parameters are updated via 
minimizing the objective function that jointly considers 
the geometric errors and the smoothness constraints over 
temporal variations. The experimental results of applying 
this algorithm to two real sequences are shown to dem-
onstrate its superior performance in reliable rectification 
distortions and robustness against outliers. 

1. Introduction 

In stereo matching, image rectification simplifies the 
search of match points between binocular images in 1D 
space constrained by the epipolar geometry, so as to 
search along the corresponding horizontal scanline. Tra-
ditional stereo systems assume fixed camera parameters 
that can be obtained through a careful camera calibration 
procedure in advance, thus the rectification becomes a 
subordinate procedure based on a Euclidean transforma-
tion up to the camera parameters. However, modern 
devices and applications, such as pan/tilt cameras, autos-
tereoscopic displays, and robot vision systems, may 
encounter the case of uncalibrated cameras or varying 
camera motions or zooming in/out effects, which reveals 
the demand and importance of capability to calibrate 
cameras and rectify images from image content itself.    

Previous methods that aim to rectify images for stereo 
matching automatically from images can be roughly 
classified into two approaches. The first approach, 
known as camera self-calibration [1-4], estimates the 
camera parameters from a set of match points extracted 
from the content of input frames. This approach starts 
with projective or affine reconstruction, and then up-
grades to metric reconstruction that is constituted by the 
physical camera parameters. Finally, the image rectifica-
tion is performed in the same manner of the calibrated 
case. Representative techniques for metric upgrade in-
clude Kruppa equation [3] and Absolute Dual Quadric 
(ADQ) [4]. More details can be found in [1,5]. However, 
the main drawbacks of such methods suffer from the 
over-fitting problem on projective space, and the projec-
tive errors may lead to unreasonable camera parameters 

which result in unexpected distortion in image rectifica-
tion. 

The other approach, known as projective rectification 
[6,7], rectifies images based on the two-view epipolar 
geometry, i.e. fundamental matrix, regardless of the Euc-
lidean camera parameters. From the estimated epipolar 
geometry, the standard process follows three steps: 1) to 
send the epipole to infinity, 2) to establish the rectification 
matrices for both images, and 3) to reduce the image 
distortion while preserving the rectification properties. 
The main advantage of this approach is that it directly 
generates the rectified images for stereo matching. 
However, the aforementioned over-fitting problem in 
projective space is still unresolved. In addition, the lack 
of physical meaning in the projective reconstruction 
makes it difficult to impose meaningful temporal con-
straint for video sequences. 

Among the projective rectification techniques, a series 
of researches started by Isgro and Trucco [8], followed 
by Fusiello and Irsara [9], are closely related to this paper. 
In [8], the authors derived the specific class of rectifica-
tion homographies by exploiting the fact that the 
fundamental matrix of a pair of rectified images has a 
particular form [6], so as to set up a minimization direct-
ly from image correspondences without requiring 
explicit computation of the epipolar geometry. Instead of 
parameterization directly in the homography matrices, 
the authors of [9] associate a reduced set of physical 
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Figure 1. The left image #0, #60, #180 of the walk 
away stereo sequence with varying camera motion and 
zooming effect: the first row are original input images, 
the second row shows the results of projective rectifi-
cation [6], and the third row shows the rectified images 
by using the proposed image rectification algorithm. 
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camera parameters with the rectification homography, 
which results in a so-called quasi-Euclidean rectification. 
The main difference between their algorithms and the 
proposed algorithm is that we improve the parameteriza-
tion with a local optimization to avoid ambiguous 
solutions and undesirable rectification distortion. More-
over, the robust estimator is employed into the 
optimization process to overcome the inevitable outlier 
problem in the feature point correspondence. Lastly, we 
impose the temporal constraints in the updated image 
rectification for stereo video sequences. 

Our algorithm aims to calibrate cameras as well as 
rectify images for uncalibrated stereo video sequences 
with temporally varying camera motions and zooming 
in/out effects. For the first frame, we estimate a reduced 
set of camera parameters through a nonlinear optimiza-
tion process to minimize the geometric errors of the 
match points in pre-rectified image coordinates. For the 
subsequent frames, we formulate an objective function 
that jointly considers the geometric errors and smooth-
ness constraints over temporal variations, and the camera 
parameters are updated so as to minimize the objective 
function. In this framework, the proposed algorithm 
contains the following advantages: 1) temporal stability 
while varying camera parameters, 2) retainable rectifica-
tion distortion, and 3) robustness against outliers. 

2. Preliminary Background 

In this section, we briefly describe the relevant theo-
retical background for image sectification [6,8,9].   

Let (Pol , Por , Pnl , Pnr) denote the original left, origin 
right, new left, and new right projection matrices, re-
spectively. The relation between the original and new 
projection matrices in terms of the rectification homo-
graphy H can be written as Pn=HPo. For the metric 
projection matrix, represented as P=K[RT | -RT t], where 
K, R, and t denotes the calibration matrix, rotation matrix, 
and translation vector, respectively, the rectification ho-
mography can be written as follows: 

 
1 1 1 1

n o n n o o n o
− − − −′= = =H P P K R R K K R K� �     (1) 

 
where P�  denotes the left 3 3×  sub-matrix of P  and 

1−=′ onRRR  is the combined rotation matrix. Based on 
the two-view epipolar geometry, i.e. mr

TFml=0 for a pair 
of corresponding image points (ml, mr) and F is the as-
sociated fundamental matrix, this linear constraint on the 
rectified image coordinates can be formulated as:  
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where the 3-vector ( )1 1, 0, 0 T=u , and [ ]×  denotes a 
3 3×  skew symmetric matrix defined as a cross product 
operator of two 3-vectors, i.e. [ ]× = ×a b a b  [1], the index 
r and l denote the right and left images, and the index j 
denotes the j-th pair of correspondence points. Note that 
[ ]1 ×u  is a specific form of the fundamental matrix for a 
rectified image pair. In [6], the authors used equation (2) 
as the objective function, parameterized by Hr and Hl 
with 10 d.o.f (2 for Hr and 8 for Hl), for the cost mini-

mization on manually selected match points.  
From equation (1) and (2), the fundamental matrix can 

be re-written as follows: 
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Note that the calibration matrix K  has 5 d.o.f. and the 
combined rotation matrix T

o n=′R R R  has 3 d.o.f. In this 
formulation, the fundamental matrix is parameterized in 
terms of the metric camera matrices. In [9], the authors 
showed that [ ]1

T
nr nl×K u K  equals (up to a scale) to 

[ ]1 ×u  when the second and third rows of nlK  and nlK  
are chosen the same. In addition, they assumed Kol = Kor 
and they were parameterized by a single variable, i.e. 
focal length. Hence, the fundamental matrix with respect 
to the Quasi-Euclidean [9] has 7 d.o.f., i.e. 1 for (Kol , 
Kor ), 3 for l′R , and 3 for r′R .  

3. Proposed Method 

Inspired by the specific form of fundamental matrices 
for the rectified coordinates, which remarkably avoids 
the over-fitting problem in the projective space, we fur-
ther generalize the image rectification framework to 
video sequences. Considering the temporal variations and 
the constraints on the intrinsic parameters, the objective 
function across all frames can be formulated as follows: 

 

F K K t tE E E Eλ λ= + +               (4) 
 

where , ,F K tE E E represent the spatial error energy, in-
ternal energy, temporal smoothness energy, respectively, 
which will be explained subsequently, and ( ),K tλ λ  are 
the weights used to balance these three energy terms.  

The first energy denotes the spatial error cost, which 
sums the epipolar constraint errors for all the correspon-
dence points in the left and right images via the 
fundamental matrix F , is given by, 

 
( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )( ), , , , ,F

t t tt t t t j j
ol or ol or s Samp l r

j
E K K R R fρ=′ ′ � F m m

 
(5) 

 
The function fSamp is defined as the Sampson error [1] for 
the j-th pair of correspondence points associated with the 
fundamental matrix F, given as follows: 
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where the matrix ( )3 1,1, 0diag=I�  is used to indicate the 
first two entries of the 3-vector. In eq. (5), the robust error 
function sρ  is employed to alleviate the influence of 
outliers, which is given by 2 2ˆ( ) log(1 2 )s r rρ σ= + , 
known as Lorentzion (or Cauchy) function in robust sta-
tistics [10]. Note that the robust standard deviation σ̂  is 



self-determined by the order statistics method [11]. 
The second energy KE  denotes the constraints on the 

intrinsic parameters in the corresponding camera matrices. 
The intrinsic parameters of the camera matrix have some 
reasonable ranges and relations [12], and the imposed 
constraints on them, e.g. identical focal lengths, zero skew, 
and principle points close to image center. These con-
straints are formulated as soft constraints in the function 

Kf , thus the energy EK is defined as 
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The last energy tE  denotes the temporal smoothness 

constraints on varying intrinsic and extrinsic parameters 
and is formulated as: 
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where the functions Kfδ  and Rfδ  are used to penalize 
the variations between the current and previous time 
states. 

The Levenberg-Marquardt optimization algorithm with 
box constraints [13] is applied to solve the nonlinear 
optimization problem in equation (4). For the first frame, 
we zero the rotation along the z-axis on the left image to 
suppress the rectification distortion as well as reduce the 
ambiguities in the solution. For the subsequent frames, 
the parameters are initialized by the results of the previous 
time state.  

4. Experimental Results 

In our implementation, the box constraints for the first 
frame are set to within 15±  degrees in Euler angles and 
[-1,1] for the focal length parameter α , where 

( )3f w hα= ⋅ +  for image width w  and height h  [12]. 
The initial values of all the parameters are set to be zero. 
For the subsequent frames, the initial values are set to the 
previous results, and the box constraints for the rotation 
angles are set to within 5±  degrees of deviation in Euler 
angles. We use the above setting for all the experiments in 
this paper. 

All the experiments were performed on the PC with 
Intel Core2 CPU 6320 of 1.86 GHz 1.87GHz, and DDR 
RAM 2G.  The corresponding feature points were auto-
matically detected and matched via the SIFT feature 
extraction and matching [14].  

We show the experimental results on two stereo se-
quences, i.e. the walk away sequence, as shown in Figure 
1, and the hiking sequence, depicted in Figure 2. Figure 1 
depicts the problem of the conventional projective recti-
fication due to the over-fitting problem in projective 
space and the significant rectification distortion.  

The efficiency of the proposed method is summarized 
as follows. For the first frame, we set the maximal number 
of the Levenberg-Marquardt iterations to 200, and it ter-
minated in 2 seconds. For the subsequent frames, the 
maximal iteration number was set to 20, and it executed at 
the rate of 2.5-3 fps, depending on the number of match 
points. Note that the execution time does not include other 
operations, such as the feature extraction/ matching and 
image warping.  

The histogram of the geometric error distribution is 
shown in Figure 3. The error measures the average dis-
tances of the parallel line of the feature point and its 
corresponding point on the rectified image pairs. In this 
figure, we observe the geometric errors of the projective 
rectification are generally smaller than those of the pro-

 
            (a)                      (b) 
Figure 3. The histogram of geometric errors in the (a) 
walk away sequence and (b) hiking sequence.  

 

 
            (a)                      (b) 
Figure 4. The curves of the estimated focal lengths in 
the (a) walk away sequence and (b) hiking sequence. 
The blue curves and red dash curves indicate the left 
and right cameras, respectively. 

Figure 2. The rectification results on the hiking se-
quence by using the proposed method. Two columns 
are the left and right views. 



posed method. However, the robust estimation (red) of the 
proposed method has similar error distribution to that of 
the projective rectification. It is interesting that both me-
thods attempt to minimize the same error, but the error 
does not directly reflect the rectification distortion. In fact, 
the proposed algorithm alleviates the undesirable rectifi-
cation distortion by enforcing the box constraints on the 
associated camera parameters. Figure 4 shows the varia-
tions of the estimated focal lengths. 

Finally, we show the results of applying the stereo 
matching algorithm based on hierarchical belief propa-
gation [15] to the selected frames in the rectified 
sequences in Figure 5. 

5. Conclusions 

In this paper, a novel self image rectification algorithm 
has been proposed for uncalibrated stereo videos with 
varying camera motion and zooming effects.  This me-
thod is based on minimizing the geometric constraints 
over a set of metric camera parameters. In this fashion, the 
proposed algorithm nicely avoids the over-fitting problem 
in the projective space. In addition, it alleviates the un-
desirable rectification distortions. We demonstrate the 
superior performance of the proposed algorithm over the 
previous method on two real sequences. 

For the future works, we would like to consider the lens 
distortion into the image rectification algorithm in the 
same optimization framework. Furthermore, we are also 
interested in extending this work to intensity consistency 
or color calibration problems for stereo sequences. 
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Figure 5. The results of stereo matching after ap-
plying the proposed rectification algorithm on the 
video sequences.  




