
Real-time Motion-based Gesture Recognition using the
GPU

Mark Bayazit, Alex Couture-Beil, Greg Mori
School of Computing Science

Simon Fraser University
Burnaby, BC, Canada∗

Abstract

In this paper we describe a real-time system for ges-
ture recognition. Given an input video, we derive a set
of motion features based on smoothed optical flow esti-
mates. A user-centric representation of these features
is obtained using face detection, and an efficient clas-
sifier is learned to discriminate between gestures. We
develop a real-time system using GPU programming for
implementing the classifier. We provide experimental
results demonstrating the speed and efficacy of our sys-
tem.

1 Introduction
Human gesture recognition in image sequences has

many applications including human-computer interac-
tion, surveillance, and video games. In this paper we
describe a system for real-time gesture recognition that
uses motion cues to discriminate between different ges-
tures. Examples of the set of gestures we use in our
experiments are shown in Fig. 1. Consider the video
frames shown in Fig. 2, which show examples of mo-
tion cues that are used to discern which gesture is being
performed.

In this work we focus on recognizing gestures – in-
tentional, choreographed motions performed by a co-
operative subject. The main contribution of this paper
is developing a real-time system for gesture recogni-
tion based on optical flow features. The core algo-
rithm for recognition is based on the work of Fathi
and Mori [1], in which discriminative portions of opti-
cal flow are learned for recognizing actions. We use a
variant of this algorithm, and combine it with a stan-
dard face detector [2] to localize the human figure in a
video. We use the CUDA GPU programming API to
create an efficient implementation of our action recog-
nition algorithm. This results in a real-time system
that can be used for applications in human-computer
interaction. We demonstrate experimentally that it is
efficient and effective for gesture recognition.

There is a vast computer vision literature in the
“looking at people” domain. Moeslund et al. [3] and
Mitra and Acharya [4] provide surveys of this area,
in general and as it pertains to gesture respectively.
Closely related pieces of work in the motion-analysis
vein include Bobick and Davis [5], who represent global

∗This research was conducted with the generous support of
the Nvidia Professor Partnership and the Canadian Natural Sci-
ence and Engineering Research Council CRD programs.

silhouette shape and motion using temporal templates.
Shechtman and Irani [6] develop a motion-consistency
method that avoids aperture effects. Efros et al. [7]
recognize the actions of small scale figures using fea-
tures derived from blurred optical flow estimates. In
contrast to these methods, which are based on nearest-
neighbour classification, we learn an efficient classifier
suitable for real-time applications. Further, our classi-
fier contains the specific parts of motion that are im-
portant for discrimination between gestures, and pre-
vious work has demonstrated their success on standard
action recognition datasets [1].

Another group of methods analyzes the motion tra-
jectories of skin-coloured blobs (typically hands, some-
times with face) [8, 9]. Reliably detecting and tracking
hands, especially with fast motions, can be challenging.
In addition, our optical flow-based method can incor-
porate motion cues beyond those in just the tracked
hand regions.

Real-time systems include Ike et al. [10], who de-
velop an efficient hand gesture system using multi-core
processors. Our approach shares similarities, but is
based on motion rather than shape and uses the CUDA
API for efficient computation on the GPU.

Punch-Right Wave-Left Sway Waves

Figure 1: Example frames from a subset of the gestures
used in our experiments.

2 Algorithm
The algorithm presented here is based on the work

of Fathi and Mori [1]. In that work, which can han-
dle data acquired from a moving camera, a stabilized
human figure-centric representation is obtained by run-
ning a pedestrian detection algorithm. Human actions

MVA2009 IAPR Conference on Machine Vision Applications, May 20-22, 2009, Yokohama, JAPAN1-3

9

(a) (b)

(c) (d)

Figure 2: (a,c) Input frames overlaid with an illus-
tration of motion features used to discriminate this
gesture from others. The heaviest weighted motion
features chosen by our algorithm are shown as arrows
noting direction of motion. A face detector identifies
a rectangular region (a) which is used to crop a user-
centric image (c) before calculating the corresponding
optical flow (b,d). Colour is used to denote direction
of motion.

are then recognized using a classifier learned from op-
tical flow features.

In our algorithm, motion features are first computed
on the input image sequence (stationary camera as-
sumed). A standard face detector is then employed to
obtain a user-centric representation, and again a classi-
fier to discriminate between gestures is learned using a
variant of AdaBoost. A real-time version of this classi-
fier is deployed using the GPU. In the following sections
we provide the details of this algorithm.

2.1 Motion Features
To calculate the motion features, we first compute

the optical flow for each frame. The optical flow vector
field F is then split into horizontal and vertical com-
ponents of the flow, Fx and Fy, each of which is then
half-wave rectified into four non-negative channels Fx+ ,
Fx− , Fy+ , Fy− , similar to Efros et al. [7]. We add an-
other channel corresponding to motion magnitude F0

which is obtained by computing the L2 norm of the
four basic channels. These five non-negative channels
are then normalized to facilitate gesture recognition in
soft-real time where frame rates can be variable, and to
account for different speed of motion by different users.
Given a vector v that represents the optical flow for a
given pixel, compute v′ = v

||v||+ε , where ε is used to
squash optical flow vectors with very small magnitude,
most likely introduced by noise. In experiments we set
ε = 0.5.

Next, each of the five channels is box-filtered to re-
duce sensitivity to small translations by the user per-
forming the gesture. This final set of five channels:
F̂x+ , F̂x− , F̂y+ , F̂y− , F̂0 will be used as our motion
features for each frame.

We represent a gesture as a collection of movements
required to complete a single phase of the gesture,
rather than just capture a subset of the gesture phase.
Hence, we aggregate the motion features over a tempo-
ral history of the last k frames, for some k which is large

enough to capture all frames from a gesture phase. In
practice, we set k to be the frame rate of our capture
data; in other words, we assumed a gesture’s phase was
less than 1 second. Setting k too high will increase the
classification response time when switching from one
gesture to another. Setting k too low would increase
the sensitivity of our algorithm to noise and variations
in users’ gesture speeds.

2.2 Face Detection
Face detection is used to create a normalized, user-

centric view of the user. The image is scaled based on
the radius of the detected face, and is then cropped and
centered based on the position of the face (Fig. 2(a)).

The frame is cropped and resized to a 30× 40 pixel
region centered around the user. All five motion fea-
ture channels described above are flattened into a single
vector v ∈ �6000 (6000 = 30 × 40 × 5), which will be
used to determine the gesture being performed.

2.3 Classification
The aforementioned motion features describe the

user’s entire motion. While these could be used di-
rectly for classification (e.g. nearest neighbour [7]), re-
cent work [1] has suggested that learning a discrimina-
tive classifier from these features can highlight the im-
portant motions for characterizing particular gestures.
Further, learning a classifier that uses a subset of the
motion features, and does not have to compare to all
training data, will lead to a more efficient system.

Given the labelled training data, we have a
multi-class classification problem, separating the data
into the different provided gesture classes. In this
work we use the multi-class boosting algorithm Ad-
aBoost.MH [11]1 that takes the motion features v as
input. The supervised training is based on a set of la-
belled gestures. In the usual fashion we define a set of
weak learners that are based on thresholding a value
from a particular component of the motion feature vec-
tor v. For a gesture class l, each weak learner ht(v, l)
is of the form:

ht(v, l) =
{

1 if pt,lvτ(t) < pt,lθt

0 otherwise (1)

for a motion feature v, where τ(t) selects a component
of the feature vector, θt ∈ (−∞,∞) is the classifica-
tion threshold of the classifier, and pt,l ∈ {−1, +1} is a
parity for the inequality sign.

The output of the final strong learner on motion
feature v for class label l is:

Ht(v, l) =
N∑

t=1

αtht(v, l) (2)

where αt are the weights chosen by AdaBoost.MH.
The maximum output value can be found, or, as in
our experiments, these values can be used to produce
precision-recall curves to analyze the sensitivity of our
algorithm.

3 Implementation
Our implementation uses the OpenCV library [12],

which provides an implementation of Viola-Jones [2]

1We used the implementation available at http:
//multiboost.sourceforge.net/.

10

face detection, and Horn and Schunck optical flow [13].
We assume a multi-core system and dedicate a thread
for face-detection. This non-real-time thread runs at
a lower FPS than the main thread; however, since our
gestures have minimal torso movement, it is acceptable
to create a figure-centric frame based on the last known
face position from some previous frame.

3.1 CUDA Classification Optimization
The classifier, which accounts for roughly 10% of

CPU time, computes the summation of a set of inde-
pendent weak-classifiers. Blocks of 512 weak classifiers
for a given class l are computed in parallel with the
CUDA GPU programming API [14].2

The four parameters associated with each weak clas-
sifier ht(v, l) are stored as elements of the arrays:
f l o a t alpha [N] , theta [N]
i n t pa r i t y [N] [K] , column [N]

where the column[t] stores the value of τ(t) used to
select the feature vector component, N is the number of
weak classifiers, and K is the number of classes. The
parity values are encoded as boolean values by map-
ping {−1, 1} to {0, 1} respectively. Our implementa-
tion used N = 1024, and K = 7.

The classification is computed with for a given 512
block and class l with the work kernel:

g l o b a l void c l a s s i f y k e r n e l (
f l o a t ∗ votes , i n t l , i n t o f f s e t)

{
extern s h a r e d f l o a t d [] ;
const unsigned in t t i d = threadIdx . x ;
const unsigned in t t = t i d + o f f s e t ;

d [t i d] = data [column [t]] ;
d [t i d] = d [t i d] > th r e sho ld [t] ;
d [t i d] = d [t i d] == par i ty [t] [l] ;
votes [t i d] = d [t i d] ∗ alpha [t] ;

}

where votes is an array of length 512 used to save
the votes, and offset is a multiple of 512 used to select
the appropriate block to compute. Upon completion,
the individual votes stored in votes are summed via the
reduce algorithm provided as a sample in the CUDA
SDK. This process is repeated for each class parity p ∈
{0, 1, ..., K − 1} and block offset.

Fig. 3 compares the GPU and single-threaded CPU
implementations on an Nvidia 9800GX2 and a dual-
core Intel Xeon 3.2GHz. Each classifier was sampled
30 times, and ranges from 512 to 8192 weak classifiers.
The CUDA-based implementation provides a speed-up
factor of roughly four compared to the CPU method.

4 Results
We have created a dataset consisting of seven ges-

tures (punch-left, punch-right, sway, wave-left, wave-
right, waves, and idle) performed by ten different peo-
ple. The videos were recorded indoors against vari-
ous backgrounds at 29.97 frames per second (FPS) at
720× 480 with a stationary Canon GL2 camera. Each
gesture lasted from five to ten seconds, and included a
minimum of five continuous cycles of the action. Sam-
ples of our dataset are displayed in Fig. 1.

The waves and sway gestures produce motion in the
lower and upper sections of the frame respectively, and

2A similar approach can use SIMD instructions on the CPU.

2000 4000 6000 8000

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0

number of weak learners

ti
m

e
 (

s
e
c
o
n
d
s
)

CPU

GPU

Figure 3: A parallel classifier implementation using the
CUDA GPU programming API provides a speed-up
factor of four compared to the CPU implementation.

Table 1: Smaller resolution input frames significantly
improves efficiency, measured in frames per second
(FPS), with minimal loss in accuracy.

resolution accuracy FPS mean FPS std dev
160×120 0.867 38.0 1.127
320×240 0.873 20.7 0.831

similar motion around the torso. Two pairs of gestures:
punch-left and wave-left; and punch-right and wave-
right produce similar motions on their respective sides
of the frame. While it is easy to distinguish a left pair
from a right pair, determining a wave from a punch
may be more challenging.

We achieved real-time results by resizing the user-
centric frame before optical flow computation. We ran-
domly selected a set of 30 videos from our dataset, and
measured the FPS based on the processing time for
the complete video. Table 1 show a smaller resolution
gains a significant speed-up with minimal loss of accu-
racy. Where accuracy is defined as the percentage of
the time the correct gesture receives the highest clas-
sification. The remainder of this section is dedicated
to a more detailed analysis of our results, which were
obtained using a resolution of 320× 240.

We tested the classifier by performing leave-one-out
cross-validation on three different configurations of our
dataset.

1. The first configuration was a subset of gestures
that eliminated the wave-left and wave-right ges-
tures. The punching gestures can easily be iden-
tified by motion on either the left or right side
of the frame; however, the sway and waves ges-
tures produce motion is overlapping areas. The
precision-recall graph in Fig. 4(a) verifies our al-
gorithm is capable of recognizing a this subset of
gestures with both precision and recall over 95%.

2. The second configuration we tested contained all
gestures, including the two waving and punching
pairs. The classification of these pairs proved to
be difficult, as shown in Fig. 4(b). The confusion
matrix in table 2 shows we were able to distinguish
a left pair from a right pair, and only confused the
gestures within a given pair.

11

0.85 0.90 0.95 1.00

0
.8

5
0
.9

0
0
.9

5
1
.0

0

recall

p
re

c
is

io
n

idle

punch-left

punch-right

sway

waves

(a)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

recall

p
re

c
is

io
n idle

punch-left

punch-right

sway

wave-left

wave-right

waves

(b)

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
.4

0
.6

0
.8

1
.0

recall

p
re

c
is

io
n idle

punch-left

punch-right

sway

wave-left

wave-right

waves

(c)

Figure 4: Precision-recall graphs for different configurations of the gesture dataset. (a) a set of five gestures
from distinct locations of the frame is performed by all ten subjects, (b) all seven gestures are performed by all
ten subjects, (c) all seven gestures are performed by seven subjects who have minimal horizontal motion in the
punching gestures.

Table 2: Confusion matrix for all seven gestures performed by all ten subjects. Rows represent the true action,
and columns represent the percentage of actions returned by the classifier.

sway idle waves punch-left wave-left punch-right wave-right
sway 1.00 0.00 0.00 0.00 0.00 0.00 0.00
idle 0.00 0.99 0.00 0.00 0.00 0.01 0.00

waves 0.06 0.00 0.94 0.00 0.00 0.00 0.00
punch-left 0.00 0.00 0.00 0.87 0.13 0.00 0.00
wave-left 0.00 0.00 0.00 0.32 0.68 0.00 0.00

punch-right 0.00 0.00 0.00 0.00 0.00 0.93 0.07
wave-right 0.10 0.00 0.00 0.00 0.00 0.14 0.76

3. After reviewing our dataset, we noticed that three
of our subjects punched horizontally to the sides
rather than vertically. It is not surprising that
those three subjects had the poorest results; they
were trained against seven vertical punchers and
only two horizontal punchers. Fig. 4(c) con-
firms that limiting our dataset to the seven verti-
cal punchers, and thus employing a stricter control
over the gestures, increases our results. However,
the disadvantage of this is that we must provide
more detailed instructions to our subjects.

5 Conclusion
In this paper we presented a real-time gesture recog-

nition system capable of classifying gestures. We em-
ployed a standard face detection algorithm to give a
user-centric coordinate frame in which motion features
were used to recognize gestures. While this use of face
detection assumes a frontal face, i.e. the user is fac-
ing the camera, one could also develop a system using
tracking in addition to face detection. This could al-
low the recognition of gestures with larger torso move-
ments. Our system is capable of real-time performance.
In particular, we use the CUDA API for GPU pro-
gramming to obtain an efficient implementation of our
classifier. One could also use the GPU for the face de-
tection and optical flow computation, the other major
processing needs of our system.

References
[1] A. Fathi and G. Mori, “Action recognition by learn-

ing mid-level motion features,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vision and Pattern Recogn., 2008.

[2] P. Viola and M. Jones, “Robust real-time face detec-
tion,” Int. Journal of Computer Vision, vol. 57, no. 2,

pp. 137–154, 2004.
[3] T. B. Moeslund, A. Hilton, and V. Kruger, “A survey

of advances in vision-based human motion capture and
analysis,” CVIU, vol. 104, pp. 90–126, 2006.

[4] S. Mitra and T. Acharya, “Gesture recognition: A sur-
vey,” IEEE Transactions On Systems, Man, And Cy-
bernetics - Part C: Applications And Reviews, vol. 37,
no. 3, pp. 311–324, May 2007.

[5] A. Bobick and J. Davis, “The recognition of human
movement using temporal templates,” IEEE Trans.
PAMI, vol. 23, no. 3, pp. 257–267, 2001.

[6] E. Shechtman and M. Irani, “Space-time behavior based
correlation,” in Proc. IEEE Comput. Soc. Conf. Com-
put. Vision and Pattern Recogn., 2005.

[7] A. Efros, A. Berg, G. Mori, and J. Malik, “Recognizing
action at a distance,” in Proc. 9th Int. Conf. Computer
Vision, vol. 2, 2003, pp. 726–733.

[8] C. Rao, A. Yilmaz, and M. Shah, “View-invariant rep-
resentation and recognition of actions,” Int. Journal of
Computer Vision, vol. 50, no. 2, pp. 203–226, 2002.

[9] M.-H. Yang and N. Ahuja, Face Detection And Gesture
Recognition For Human-Computer Interaction. Kluwer
Academic Publishers, 2001.

[10] T. Ike, N. Kishikawa, and B. Stenger, “A real-time
hand gesture interface implemented on a multi-core
processor,” in IAPR Conference on Machine Vision
Applications, 2007.

[11] R. Schapire and Y. Singer, “Improved boosting algo-
rithms using confidence-rated predictions,” Machine
Learning, vol. 37, no. 3, pp. 297–336, 1999.

[12] G. Bradski and A. Kaehler, Learning OpenCV: Com-
puter Vision with the OpenCV Library. Cambridge,
MA: O’Reilly, 2008.

[13] B. Horn and B. Schunk, “Determining optical flow,”
Artificial Intelligence, vol. 17, pp. 185–203, 1981.

[14] J. Nickolls, I. Buck, M. Garland, and K. Skadron,
“Scalable parallel programming with cuda,” Queue,
vol. 6, no. 2, pp. 40–53, 2008.

12

