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Abstract

A two-dimensional (2-D) convolution mask is

proposed for detecting the location of irregularities and

defects in a periodic two-dimensional signal or image. In

this approach, defects on a 2-D test image is automatically

filtered out by a 2-D convolution mask implementing the

spatial filter. This approach is reliable and

computationally efficient. Besides, unlike the traditional

die-to-die approach, it can avoid all troubles in a database

image, a scaling or alignment procedure.

1. Introduction

Inspection of defects on a two-dimensional periodic

pattern inspection occurs to a wide range of industrial

problems including defect detection of memory chips,

shift registers, switched capacitors, CCD arrays, LCD 

displays and other areas. 

The die-to-die inspection method [1-6] has been 

adopted in many industrial applications for its simplicity

and computational efficiency. However, this approach may

require precise alignment and segmentation of repeated

patterns [4-6], and the required precisions increase with

the density of the repeated pattern. These steps can be

quite sophisticated and computationally demanding [3, 6] 

owing to the fact that the size of the defects is becoming

smaller, and harder to detect.

On the other hand, filtering techniques have a very

good potential in avoid difficulties encountering in

registration, segmentation and building golden template.

Since periodic pattern is a special case of structured

textures, the inspection techniques originally developed

for structured textures can also be applied to periodic

patterns. For instance, the wavelet transform [7-8] and the

Gabor filter [9-10] have been applied to texture defect

detection. Unfortunately, both of them are computationally

demanding.

Discrete Fourier transform demands less computation

effort and has been applied to defect detections [11-13].

However, both forward and inverse discrete Fourier

transforms still require considerable computation time,

which is not suitable for industries such as LCD displays

manufacture.

In this paper, it proposes a two-dimensional

convolution mask for the inspection of periodic patterns.

This approach has two advantages: (1)Its total

computation effort is of the same order of the basic

die-to-die inspection method. (2)It can sharply detect

defected areas.

2. Reconstructing periodic patterns using 
ideal band-pass filters 

In this section, first the characteristics of a periodic

pattern and various types of defected area in the frequency

domain will be discussed. Based on these discussions, an 

ideal multi-band filter will be proposed in the frequency

domain to sharply reconstruct a periodic pattern.

2.1 2-D Fourier transform of a continuous 
image

Let x, and y be the spatial coordinates of a continuous

image, be a periodic pattern, where x, and y are

real numbers, while be the unit pattern defined

in the interval

),( yxf

( , )p x y

[0, ], [0, ]x yx T y T  and ( , )p x y

repeats itself in , that is),( yxf

( , ) ( , )f x y p x y              (1)

if and only if xx x nT  and yy y mT , where n

and m are integers,
xT  and are spatial periods. Let 

yT

( , ) ( ) ( )x y
m n

x y x nT y mT

be a 2-D comb function. Then, can be expressed

as the unit pattern

),( yxf
( , )p x y convoluted with the comb

function ( , )x y

( , ) ( , ) ( , )f x y p x y x y   (2) 

where denotes the convolution operation. Finally, let

( , )F u v  and ( , )P u v be, respectively, the Fourier 

transforms of  and , it can be shown by

using the convolution theorem [6] that
),( yxf ( , )p x y

( ) ( ) ( ,, , )F Pu v u v u v (3)

where ( , )u v is the Fourier transform of ( , )x y ,

( , ) ( ) ( )x y
m n

u v u n v m (4)

and

2
x

xT
, 2

y
yT

        (5)

However, the simplicity of this relationship breaks 

when both  and  are two-dimensional

discrete signals with finite window length mainly due to
),( yxf ( , )p x y
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the leakage effect as will be discussed in the following

subsection.

2.2 2-D Discrete Fourier transform of an image

In most industrial applications such as the automatic

optical inspection (AOI) or the automatic vision

inspection (AVI), an image is captured by a 

charge-coupled device (CCD) using finite pixels, the

two-dimensional (2-D) discrete Fourier transform (DFT)

should be applied instead of the Fourier transform. In such

a case, the previous statements basically hold true except

that (1)aliasing may occur when the Nyquist sampling

criterion fails, and (2)the leakage effect may occur due 

to finite sampling points.

However,, when the numbers of columns and rows,

denoted as xN  and 
yN , in a digital image periods

happen to be the spatial periods
xT  and  multiplied

yT

by some integers, the leakage effect is unobservable from

the DFT of the image. Otherwise, the leakage effect could 

be significant.

 (a) ,       (b) ,=8xT =16yT =7xT =17yT

       Figure 1: gain plot of a periodic pattern

For instance, consider a digital image of a periodic
pattern *( , )f j k , where *( , )f j k  consists of

256 256x yN N pixels,

1, for and
*( , )

0, otherwise

x yj nT k mT
f j k     (6)

, 0, 1, 2, 3,n m , the periods are pixels and

pixels. As is shown on Fig. 1(a), there is no leakage 

effect on the gain plot of the DFT of 

=8xT

=16yT

*( , )f j k due to the

fact that 32x xN T  and 16y yN T .

However, when pixels and pixels,

leakage occurs along both the horizontal and vertical

directions in the gain plot of the DFT, as is shown in Fig.

1(b), since neither of

=7xT =17yT

xN  and 
yN  is an integer

multiplied by their corresponding periods
xT  and .

yT

It should be noted that, in many disciplines of signal

processing, aliasing and leakage are treated as unwanted

noise. However, in the case of AOI and AVI, since

aliasing and leakage are part of a ‘normal image’, they

should not be filtered out in the process of building a 

‘golden template’. For instance, Fig. 2 shows the original

image of a ‘normal’ LCD panel in Fig. 2(a) and its

spectrum in Fig 2(b), where the effect of leakage is 

obvious. The number of pixels in Fig. 2(a) is 256 256

pixels, while the periods of the pattern are 6 pixels and

17 pixels along horizontal and vertical axis, respectively.

Referring to Fig. 2(b), the height is the spectrum of the

image in Fig. 2(a) at a location (u, v) in the frequency

domain, the highest peak occurs at the location where

( , ) (0,0)u v and the height of this peak corresponds to

the dc-bias or average intensity of the image in Fig. 2(a),

while the locations ( , )u v where local peaks of the

spectrum occur correspond to the sampling points where

( , ) ( , )x yu v n m  with n and m being integers. The

leakage effect is localized and decades rapidly away from 

the sampling points where ( , ) ( , )x yu v n m  , but is

not negligible.

(a) LCD array         (b)Spectrum of the LCD array

*( , )f j k ( , ) *( , )F u v f j k

Figure 2: Spectrum and leakage of a LCD array

2.3 Pattern reconstruction via discrete Fourier

transform

In this subsection an approach using the 2-D discrete

Fourier transform will be presented for the reconstruction

of a periodic pattern taking into account possible leakage

in a ‘normal image’ so that it can sensitively and sharply

discriminate the periodic pattern from defects with a 

minimal effect of blurring. Before that, existing

approaches closest to the present one will be examined

first.

The discrete Fourier transform has been applied to

discriminate a defected textile from a good one by

analyzing its frequency spectrum [11-13]. However, none

of these works has ever attempted to determine the

location and shape of defected areas, which is a must in

the AOI and AVI industries.

There was, however, an attempt to pin-point the

location and shape of defected areas in a periodic pattern

[14] using the DFT, where a 2-D ideal low-pass filter has 

been designed to filter out defected areas. In this approach,

first the DFT is applied to an image containing a periodic

pattern, then a 2-D ideal low-pass filter is designed to filter

out periodic patterns with the hope that only images of the

defected areas will be left behind. And, finally, the inverse

DFT is applied to recover the location and shape of
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defected areas before applying a threshold to filter out

noises in the spatial domain.

This approach, however, works only for very limited

cases due to the following drawbacks. First, it implicitly

assumes that there exists a radius on the frequency domain

to separate the spectrum of defected areas in the low 

frequency range from that of the periodic pattern in the

high frequency range. To meet this assumption, the size of 

defected areas must be sufficiently large, and the periodic

pattern must have very strong contrast and/or a relatively

small period. Otherwise, the spectrum of defected areas

may seriously overlap with that of the periodic pattern

causing difficulties in later steps for separating defected

areas from the periodic pattern. Second, even in the cases 

where a radius barely exists to roughly separate defect

areas from the periodic pattern, the boundary of defected

areas will be blurred due to the low-pass filtering.

To amend the aforementioned drawbacks in order to

propose an inspection technique that meets the more and 

more demanding need of AOI and AVI industries, the ideal

multi-band filter
1( , )H u v shown in Fig. 3(b) is proposed

to precisely and sharply reconstruct the periodic pattern

from a defected image, and this filter will be implemented

using a 2-D convolution mask in Section 3. Figure 3(a) is

a 2-D representation of Fig. 2(b) where the intensity (grey 

level) at a frequency point (u, v) indicates the magnitude

of the frequency spectrum. Fig. 3(b) shows the proposed 

ideal multi-band filter
1( , )H u v in the frequency domain

whose value is binary, i.e., the value of the filter is 1 for all 

frequency points in the bright area and 0 for the rest in the

dark area. 

 (a) ( , )F u v  of Fig. 2(b)      (b)Band-Filter
1( , )H u v

Figure 3: The proposed ideal multi-band filter

Please also notice that all bright areas (windows) are

centered at the sampling points ( , ) ( , )x yu v n m  to

allow the passage of not only the ideal periodic pattern but

also its leakage. However, no signal is allowed to pass in

the lowest frequency range where the energy of defects

dominates. Finally, once the periodic pattern is sharply

reconstructed, the traditional golden template approach

can be applied to detect defected areas.

However, to speed up the inspection process, the

ideal multi-band filter proposed in this section will be 

implemented as a 2-D spatial convolution mask to be 

detailed in Section 3 so that there is no need for the DFT

and the inverse DFT.

3. Comb filter and the convolution mask 

The ideal multi-band filter shown in Fig. 3(b) is 

difficult to implement by spatial convolution masks.

However, it can be decomposed into two filters that can

be easily implemented by spatial convolution masks.

Referring to Fig. 4, the ideal multi-band filter

1( , )H u v in the frequency domain can be decomposed into

an ideal comb filter
2( , )H u v , an ideal low-pass filter

3( , )H u v and the dc-gain of an image(0,0)F *( , )f j k ,
that is 

1 2 3( , ) ( , ) ( , ) (0,0)H u v H u v H u v F    (7) 

(a) Ideal filter 
2( , )H u v    (b)Low-pass filter

3( , )H u v

Figure 4: Decomposition of the ideal multi-band filter 

The advantage with this implementation scheme lies

in that the ideal comb filter 
2( , )H u v can easily be

obtained by the up-sampling of the ideal low-pass filter

3( , )H u v  [15].

To approximate the non-causal ideal low-pass filter

by a FIR filter, there exist many approaches [15]. To

minimize the computation effort, the moving average filter

[15] is applied in the paper to produce the results shown in

Fig. 5(b). 

Take the periodic pattern shown in Fig. 3(a) for

instance, the bandwidths of the 2-D ideal low-pass filter

3( , )H u v are chosen as 0.5 x
 and 0.5 y

, and a 3 3

moving average filter is used to approximate the ideal

low-pass filter 
3( , )H u v , where the equivalent convolution

mask
3M  is 

3

1 1 1
1

1 1 1
9

1 1 1

M .

Furthermore, the comb filter 
2( , )H u v  and its

associated convolution mask
2M is the moving average

filter up-sampled by the orders of  and 17xu 6yu .

Therefore, the present approach involves only addition 

operation except in a few places. As a result, the 

computation effort of the present approach is only about

3% of that using the DFT and the inverse DFT such as

[14].

3
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Besides the computational advantage, the present

approach also gives better inspection results. The result of 

the present approach is compared with that of low-pas

filtering in Fig. 5. In both case, the detected defect areas 

are shown in grey images to avoid the effect introduced

by thresholding. Please notice that, the defected areas 

detected by a low-pass filter [14] is seriously blurred,

while the present approach gives quite sharp image of the 

defected area in Fig. 5(b). Due to the page length, only

one set of the results are presented in this paper. However,

several other images of defected LCD panels have been

tested in our laboratory, in all these tests the present

approach persistently shows very sharp results while the

defected area detected by a low-pass filter [14] are always

seriously blurred. Hence the present approach is

apparently far more superior than [14].

4

In order to further investigate the validity of the

proposed method, three more test samples are obtained

from the production line, one of them is free of defects.

These four samples are reproduced for 25 times each to

result in 100 samples in total. These 100 samples are then

tested in random sequence. The results of the present 

approach correctly differentiate the good sample from the

three defected samples to yield a 100% of recognition rate. 

4. Conclusion

A technique has been proposed for the inspection of

periodic patterns using two 2-D convolution masks of the

same element. The present approach is computationally

efficient, and it can sharply detect the defected areas.
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(a) Original image of a LCD panel  (b)Result of the present method       (c)Result of low-pass filtering [14]

Figure 5: Defect detection of a periodic pattern
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