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Abstract

Most of background subtraction methods represent 
background statistics using probabilistic unified frame-
works such as the Gaussian mixture model or kernel 
density estimation. But these models cannot define the 
exact difference between two pixels. It causes misclassi-
fication such as false alarms and misses. We presented a 
new sensor noise model appropriate for general CCD 
cameras. Based on this, we propose a novel background 
subtraction method. Our noise modeling needs a line 
estimation step to relate image intensities with parame-
ters of the noise distribution. This paper describes a new 
line estimation algorithm given two consecutive static 
images, and from which can have a well-fitted distribu-
tion for each pixel according to intensity of the pixel. In 
addition, we present a background update method to 
deal with the continuous variation of the background. We 
can estimate accurate foregrounds by adapting the esti-
mated per-pixel distributions and background updates. 

1. Introduction 

Background subtraction is widely used for various ap-
plications such as tracking moving objects, video 
surveillance systems and traffic monitoring. It maintains 
background images or background models to classify 
new observations as background parts or foreground 
parts. The difference between a current frame and the 
background model should be well-measured and the 
background model should be covered the characteristic 
of the background well.  

There have been many works that tried to obtain ac-
curate foregrounds with suppression of false alarms. 
Wren et. al. [2] used a single Gaussian model to model 
the distribution of the background. However, it is insuf-
ficient to represent the background intensity by using 
only one Gaussian distribution when the background is 
complex. To deal with complex backgrounds, Friedman 
and Russel [3] and Stauffer and Grimson [4] proposed 
frameworks using mixture of Gaussians. These ap-
proaches can have multiple hypotheses for the 
background so that it can be adapted for complex scenes 
such as waving trees, streaming waters and refreshing 
monitors. However, they can not deal with the uncertain-
ties in the correct manner. In [5], Elgammal et. al. 
proposed a non-parametric approach to deal with the 
uncertainties in an accurate manner. Mittal and Paragios 
[6] combined the non-parametric approach with motion 
information as optical flow to deal with persistent dy-
namic behavior in time.  

The problem of previous works is that they can not 
define the exact difference for each pixel individually. To 
deal with this, they used the approximated distributions 
to represent background statistics. But we can define the 
exact difference based on our previous sensor modeling. 
It provides us a correct criterion to classify the fore-
ground. 

In our previous work [1], we proposed a new noise 
model for the difference between two neighboring pixels. 
We apply the noise model to measure the difference of 
pixels in two consecutive frames. We showed that inten-
sity is linearly related with parameters of noise. It means 
that if we estimate the line between intensity and pa-
rameters, the noise distributions are determined for each 
individual pixel. To estimate this line, we propose a new 
estimation algorithm for two frames with no scene 
change. This estimation method can reduce required im-
ages for the line estimation. For background subtraction, 
we maintain a background image to adapt the scene 
changes by illumination and conversion from dynamic 
objects to static objects (e.g. a car stops for a while). We 
classify foreground pixels statistically based on noise 
distributions.  

This paper is organized as follows. In Section 2, we 
briefly review the previous noise modeling method [1]. 
Section 3 presents a new line estimation method in the 
temporal domain to reduce required static images. In 
Section 4, we explain the strategy for background sub-
traction. Section 5 shows some experimental results to 
validate the proposed approach. Finally, we present our 
conclusions in Section 6. 

2. Noise modeling using the Skellam dis-
tribution

In [7], several sources of image noise are listed. But 
most of the sources can usually be much reduced by ap-
propriate design of manufacturers and also can be 
ignored because the total SNR of a complete system is 
typically dominated by the smallest SNR. The most 
dominant noise component is photon noise in CCD or 
CMOS cameras. In [1], we assume that the image noise 
is caused from dominant photon noise.  

The photon noise is usually modeled by a Poisson dis-
tribution [7]. When we assume that image intensity of 
each pixel follows the Poisson distribution, the probabil-
ity distribution for p photons in an observation time 
interval T seconds is known to be a Poisson as 

540

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN13-27



( )
( | , )

!

p TT e
P p T

p
          (1) 

where  is a rate parameter measured in photons per 

second. The mean and standard deviation are given by 

T                  (2) 
Figure 1 Test image for Skellam-Intensity line estima-

tion T                 (3) 
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Since the number of photons determines the intensity 

of a pixel, photon noise is not independent of the signal. 

In addition, photon noise is neither Gaussian nor additive. 

As shown in (2),  means the number of photons over 

interval T. It is natural that the number of photons in a 

brighter pixel is larger than that in a darker pixel. 

We use a Poisson distribution directly to represent the 

distribution of intensity difference. The difference of two 

Poisson random variables is defined a Skellam distribu-

tion [8]. The probability mass function (pmf) of a 

Skellam distribution is a function of  which means 

difference between two Poisson random variables, and 

expressed as  

k Figure 2 Intensity histogram and local maxima 
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3. Intensity-Skellam line estimation in the 
temporal domain 

When we obtain some pairs of a Skellam parameter 
and intensity, we can fit a line to set of pairs. If we esti-
mate Skellam parameters at a certain pixel in the 
temporal domain, we need more 10,000 images to ensure 
that the calculated statistics is sufficiently stable. But it is 
impractical to capture so many static images of indoor or 
outdoor images. We propose a new Intensity-Skellam 
line estimation method to reduce the required static im-
ages to two images. It is more practical compared with 
capturing over 10,000 images. When we assume that 
each pixel in an image is mutually independent, we can 
regard the intensity difference between two correspond-
ing pixels in two frames as set of intensity difference in 
the temporal domain. Therefore, we have sufficient pix-
els at certain intensity for estimating Skellam parameters.  

Our calibration algorithm for a channel is as follow. 

where 
1

 and 
2

 are means or expected values of 

two Poisson distributions and  is the modified 

Bessel function of the first kind.  

( )kI z

We can estimate the Skellam parameters of intensity 

difference easily by using statistics of Skellam distribu-

tion. The mean 
S

 and the variance 2

S
 of a Skellam 

distribution are given as 

1S 2             (5) 

2

1S 2             (6) 

From (5) and (6), we can calculate the parameters di-

rectly as  
2

1 ( )S S / 2

) / 2

          (7) 

2

2 ( S S          (8) 1. Generate a histogram of intensity in first frame 

and find local maxima 
1

mx , 0,1, ,m MS
 and 2

S
 are obtained from images of a static 

scene like 
2. Find set of corresponding pixels in two frames 

around the local maxima as 1( ( , ) ( , ))t tt
S

x i j x i j

n
       (9) 
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3. Calculate the mean and the variance of a Skellam 

distribution for each set
mX , as 

where ( , )tx i j  means the intensity of ( ,  position 

at frame t and n is the number of total images.  
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As noted previously, the parameters, 
1
 and 

2
 are 

the number of photons so that there might be a certain 

relationship between Skellam parameters and intensity. 

In [1], we showed that Skellam parameters and intensity 

have linearity. We called this line as the Inten-

sity-Skellam line. If we estimate Intensity-Skellam line, 

we can estimate Skellam parameters for each pixel ac-

cording to intensity of R, G, B channels.  

2

.

4. Calculate Skellam parameters, 
1

 and 
2

 from 

(7) and (8). 

5. Fit two lines to pairs of 1

1( , )mx  and 1

2( , )mx

using conventional RANSAC methods. 
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       (a) R channel               (b) G channel 
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(c) B channel

Figure 3 Intensity-Skellam line estimation results 

We carry out an experiment on the algorithm for two 
real images as shown in Figure 1. We capture color pat-
terns because we can obtain accurate Intensity-Skellam 
line from a large number of static images as ground truth. 
Figure 2 shows the histogram of intensity in the R chan-
nel and detected local maxima. From the local maxima, 
we have the pairs of intensity and Skellam parameters. 
We set the value of  to one. The Intensity-Skellam 
line is determined by RANSAC. Figure 3 shows an esti-
mation result for each channel. For comparison, we plot 
ground truth lines obtained by 10,000 static images. Our 
Intensity-Skellam line is very accurate compared with 
the ground truth. Most of the pairs used for fitting lines 
are laid around the fitted line. It means that we can esti-
mate the line by using small number of pairs. 

4. Background subtraction 

4.1. Maintenance of the background image 

When we measure the difference between only con-
secutive frames, we can not deal with various situations 
that can be occurred in general indoor and outdoor envi-
ronment such as abrupt or gradual illumination changes, 
position changes of furniture and moving vehicles are 
stopped or parked. Therefore, we should maintain a 
background image to deal with such environmental 
changes.  

There are two conventional mechanisms to update 
background. First one is a selective update which adds 
the new pixel to the model only if it is classified as a 
background pixel. From this approach, we can correct 
the part of backgrounds occluded by moving objects at 
previous frames. But the problem is that erroneous de-
tection results or temporary static objects may make 
permanent incorrect background model. It causes the 
incorrect foreground detection at incorrect background 
parts. Second one is a blind update which just adds the 
new sample to the model. This update can reduce the 
previous problem of the selective update since it restores 
the incorrect background model to correct one. But it 
causes another problem of updating incorrect back-
ground model by moving objects and false alarms.  

In order to deal with these problems of conventional 
update methods, we propose another background model-

ing strategy. The conventional update methods [5] used 
only background images and current upcoming images. 
But we utilize difference between two consecutive im-
ages to update the background model. Our algorithm of 
maintaining the background model is as follows: 

1. Initialize a background image, 0 ( )BI p , as an im-

age in the first frame.  

2. For each frame t, store history images of length T
and update background mask as 

( ) 1, ( ) 0t t

B FM p M P .

(
BP ,

FP : Classified as a background and a fore-

ground pixel in consecutive images, respectively) 

3. If t T , update the background model as 

'

'

' '

1

( ) ( ),        if ( ) 1

   ( ) ( ),                otherwise

tt
t t

B H t

t t T t t T

t t

B B

I p I p M p

I p I p

(
t

HI  is a stored history image at frame t).

Our algorithm can deal with the problems of selective 
and blind updates. We can correct the part of back-
grounds occluded by moving objects the same as the 
selective update. The problem of a blind update is solved 
because we update the incorrect background parts when 
there is no foreground during T frames. Therefore, we 
don’t need the blind update to restore the incorrect parts. 
The only defect is that it takes T frames to update the 
background correctly. When we set T=1, our algorithm 
became totally same as a selective update. Otherwise, 
our algorithm corrects the erroneous parts within T
frames.  

4.2. Background subtraction strategy 

From Section 3, we have exact distributions for each 
pixel in the image. We can classify foregrounds to meas-
ure the difference between a current image and the 
maintained background image from Section 4.1. The 
update parameter T is set to five. The classification is 
performed by a statistical hypothesis test [9]. Our noise 
modeling is so precise that subtraction results have few 
false alarms as shown in Figure 4. Therefore, we do not 
need to any further processing as shown in other meth-
ods [5]. Our background update algorithm is applicable 
since the result is almost the true foregrounds.  

5. Experimental results 

We apply our algorithm to an outdoor sequence. We 
use PointGrey Flea camera with a 640x480 resolution. 
Our algorithm runs by 4Hz in AMD Athlon64 X2 
2.41GHz and 2GB memory. In Figure 4(b), we show 
updated background images given current images as 
shown in Figure 4(a). Although there are moving objects, 
our background model can adapt the background well. 
Based on updated backgrounds we can detect foreground 
parts by measuring the difference between current up-
coming images and background images. In Figure 4(c), 
detection results are so accurate that our method can de-
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tect almost true boundaries for moving humans and cars 
except for a few shadows. Compared with the result by 
mixture of Gaussian [4], our results have smaller missing 
pixels as well as smaller false alarms because mixture of 
Gaussian can not guarantee exact distribution of pixel 
color differences but have rough Gaussian distributions 
for background estimation. The third column result 
shows a scene change by an abrupt illumination change. 
Since our background model is promptly adapted, false 
alarms are much reduced than the result from mixture of 
Gaussian. Furthermore, our all of pixels have exact dis-
tribution according to intensity, we can detect moving 
objects in the dark condition as shown in Figure 5.  

It is worthy noted that all of our detection results have 
pretty small false alarms as shown in Figures 4 and 5. It 
is very advantageous to apply surveillance system. Most 
of subtraction algorithm suffered from false alarms as 
shown in third column of Figure 4(d). It is difficult to 
discriminate the real foreground caused by moving hu-
man or cars from the false alarms caused by 
misclassification. But, our results have small false alarms 
although we do not use any further post processing. 
Therefore, we can determine that there is some fore-
ground pixels in our detection result, most of them are 
caused by real moving objects. 

(a) Current images 

(b) Updated backgrounds by the proposed method 

(c) Foreground detection by the propose method 

(d) Foreground detection by Mixture of Gaussian [4] 

Figure 4 Background subtraction results (daylight) 

6. Conclusions

We propose a new background subtraction method by 
using previously proposed noise modeling and a new 
background update strategy. Other previous methods 
deal with background subtraction with approximated 
distributions because they can not define an exact dif-
ference for classification. But we can define an exact 
difference based on sensor noise modeling. To estimate 
Intensity-Skellam line, we propose an estimation method 
for two static images. The line estimation result is so 
accurate that there is little difference with the available 
ground truth. We propose a background update approach. 
Conventional methods used only the difference between 
an input image and a background image to update the 

background model. In the contrary, we utilize the differ-
ence between consecutive frames for updating 
backgrounds. Our background update method adapts the 
change of backgrounds very well. Based on estimated 
noise statistics and updated background models, we can 
detect foreground parts precisely in sequences. The ad-
vantage of our method is that there are few false alarms 
without post processing and we can apply our algorithm 
for dark conditions. 

(a) Current images 

(b) Updated backgrounds by the proposed method 

(c) Foreground detection by the propose method 

Figure 5 Background subtraction results (dark) 
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