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Abstract

We propose use of an appearance manifold with 

embedded covariance matrix as a technique for 

recognizing 3D objects from images that are influenced by 

geometric and quality-degraded effects. Our strategy 

covers the construction of this appearance manifold by 

giving consideration to pose changes. In the proposed 

method, the correspondence of each learning pose is not 

based on the eigenpoint but directly from the covariance 

matrix. Thus, we eliminate the dependency on 

eigenpoint-to-eigenpoint correspondence, which is the 

main cause of misclassification due to the phenomenon of 

the eigenpoint’s shifting position. Experimental results 

show that our approach achieves higher recognition 

accuracies than using a simple appearance manifold. 

Consequently, it can provide a more efficient way of 

developing a robust 3D object recognition system. 

1.  Introduction 

Visual learning of 3D objects has been one of the most 

challenging problems in vision systems. 3D objects are 

visually complex and highly dependent on environmental 

conditions. Therefore, it is necessary to figure an object in 

such a way that can fully represent the characteristics of the 

object. In general, capturing the characteristics of a 3D 

object can be done by using several combinations of 2D 

images or by constructing a high-cost 3D shape model. 

Here, we focus on an appearance-based approach that uses 

combinations of images to capture the appearance 

variability of a 3D object.  

Over the past decade, there has been a growing trend to 

use appearance-based approaches for 3D object 

recognition. Appearance-based approaches often start with 

the concept of Principal Component Analysis (PCA). This 

concept enables a method to efficiently present a series of 

sample images in a low-dimensional feature description, 

called the eigenspace. For years, the eigenspace has 

provided an efficient and easy way to solve many 

recognition problems. Some of the earlier works in this 

domain include the eigenpictures of Kirby and Sirovich [1] 

for characterizing the human face, the eigenfaces of Turk 

and Pentland [2], Moghaddam’s [3] proposal of 

probabilistic PCA, and the Parametric Eigenspace of 

Murase and Nayar [4].  

Just as the appearance of an object highly depends on the 

image conditions, the image’s position in eigenspace relies 

on the object’s appearance. For handling changes caused 

by pose and illumination variability, Murase and Nayar’s 

Parametric Eigenspace method could give more 

satisfactory results than the traditional eigenspace method. 

Unfortunately, this method tends to fail when there are 

significant variations in scale, orientation, noise and 

degradation in the input image. This failure is mainly 

caused by the eigenpoint’s shifting position in the input 

image, which is influenced by various degradation effects, 

from the learning images.  

To overcome this limitation, we propose the 

construction of an appearance manifold with embedded 

covariance matrix. The basic idea is to eliminate the 

eigenpoint-to-eigenpoint correspondences of each learning 

pose class and then to construct the correspondences from 

the covariance matrices directly. By using this model, the 

appearance manifold helps the system to analyze image 

conditions such as pose changes, while the embedded 

view-dependent covariance matrix defines the scope of an 

eigenpoint’s shifting positions in eigenspace.

Our paper is organized as follows: we describe the 

process of constructing the appearance manifold with an 

embedded covariance matrix in Section 2. Next, Section 3 

covers the development of a 3D object recognition system. 

Finally, our conclusions are presented in Section 4. 

2.  Appearance Manifold with Embedded          

Covariance Matrix in Eigenspace 

This section describes the detailed process of 

constructing the appearance manifold with an embedded 

covariance matrix, which consists of the development of 

the eigenspace using PCA, the construction of various 

techniques of appearance manifold in eigenspace, and the 

recognition of input images using the Mahalanobis 

distance measurement.

2.1.  Eigenspace representation 

Appearance-based approaches usually deal with a set of 

learning images in various poses. These images are 

represented in a very-high-dimensional space, and thus 

they cannot be applied directly due to efficiency reasons. 

Here, PCA provides a technique to efficiently represent a 

collection of images by reducing their dimensionality.
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(a)        (b)        (c)        (d) 

Figure 1. Construction models of appearance manifold (a) Parametric Eigenspace (PE), (b) points interpolation (AMPI),

(c) constant covariance matrix (AMCC), (d) view-dependent covariance matrix (AMVC). 

Generally, the captured images should be normalized in 

brightness and scaled in order to be invariant to image 

magnification and illumination intensity. These normalized 

images can be written as a vector x by reading the number 

of pixels ( N ) in an image: 
T

Nxxx ],...,,[ 21x .                             (1)

Let M be the number of images in a learning set. By 

subtracting the average image c of all images, the learning 

set Y will be obtained: 

],...,,[ 21 ccc MxxxY . (2)

Next, define the auto-correlation matrix by 
T

YYQ                                    (3)

and determine the eigenvalues i with their corresponding 

eigenvectors ie  by solving the following eigenvector 

decomposition problem:  

iii Qee .                                  (4)

To reduce the dimension, simply ignore small eigenvalues 

and use only k corresponding eigenvectors by using a T

threshold value: 
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where Nk .

The first k eigenvectors will be used to project S

learning samples of P objects with H poses. Project 
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p
sx  as the s sample image of object p with horizontal 

viewpoint h into the eigenspace:
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By projecting all of the learning samples into the 

eigenspace, learning features are represented efficiently as 

a set of discrete points in a low-dimensional space. 

2.2. Construction of Appearance Manifold with 

Embedded Covariance Matrix 

In this section, we present various techniques to 

construct the appearance manifold. Figure 1 shows the four 

types of construction models for the appearance manifold: 

the simple manifold used in the Parametric Eigenspace 

(PE) method, the appearance manifold using the point 

interpolation (AMPI) method, the appearance manifold 

with constant covariance matrix (AMCC) method, and the 

appearance manifold with view-dependent covariance 

matrix (AMVC) method.  

Although each method uses a different type of 

construction technique for the appearance manifold, in 

general they use the same basic steps. First, after 

transforming learning images to the eigenspace, calculate 

the mean vector )()(
h

pµ and the covariance matrix 

)()(
h

p for each object p for horizontal viewpoint h .

The mean vector is typically estimated using
S
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where s  is the number of learning samples from each class, 

and )(
)(

h
p

sg is the image sample s from class viewpoint 

h and object p . On the other hand, the covariance matrix 

is typically estimated by 
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Next, create )(~ )( pµ as a continuous manifold of the 

mean vector and )()(
~

p for the covariance matrix. The 

processes of creating manifolds )(~ )( pµ and )()(
~

p  might 

be different from one method to another.  

The PE method uses a simple manifold obtained from 

the interpolation of the mean vector of the eigenpoints in 

two consecutive poses. However, for the covariance 

matrices, the PE method simply applies the values of the 

identity matrix. The construction model of the appearance 

manifold in the PE method is depicted in Fig. 1(a).   

Next, Fig. 1(b) shows the appearance manifold with the 

point interpolation (AMPI) method. It obtains the 

appearance manifold by interpolating every eigenpoint in 

each pose class to other eigenpoints in the consecutive pose 

classes that have similar characteristics, such as 

degradation effects. After creating those manifolds for each 

eigenpoint, generate the new eigenpoints for every 

in-between class pose, and then calculate their mean 

vectors and covariance matrices for every pose class. 
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Figure 2. Scheme of AMVC method for 3D object recognition. 

Figure 1(c) shows the tube appearance manifold with a 

constant covariance matrix (AMCC). After calculating the 

mean vectors and covariance matrix values for each 

learning pose in (7) and (8), apply an interpolation method 

for the mean vector of two consecutive learning poses to 

obtain the manifold of mean vector )(~ )( pµ . On the other 

hand, the manifold of covariance matrix )()(
~

p contains 

the same value for every viewpoint h  by applying the 

average covariance matrix 
H

h

h
pp

H
1

)()( )(
1                        (9)

with H number of viewpoint classes for each object. 

Next, Fig. 1(d) shows another type of appearance 

manifold method, called the appearance manifold with 

view-dependent covariance matrix (AMVC). This method 

uses the appearance manifold embedded with 

view-dependent covariance matrix that changes along with 

the function of viewpoints. The manifold )(~ )( pµ could be 

obtained by applying an interpolation method between two 

consecutive mean vectors )()(
h

p
µ and )( 1

)(
h

p
µ . Then, 

the manifold )()(
~

p could be obtained by interpolating the 

covariance matrices )()(
h

p and )( 1
)(

h
p , respectively. 

Here, since we use only the horizontal pose parameter h ,

the surface of the appearance manifold in the AMVC 

method will be a tube. Figure 2 shows the scheme of the 

AMVC method with its tube surface.   

Figure 3. Sample images of 3D objects with various 

translation, rotation, and motion blur effects. 

2.3. Classification using distance measurement 

In order to recognize an input image u , first project it

into the eigenspace 

)(],...,,[ 21 cueeez T
k                   (10)

and then calculate distance d  between the projected-image 

in the eigenspace z and the manifold.  

Since we have the parameter of mean vector and 

covariance matrix in the appearance manifold, the 

sufficient distance measurement to classify the input image 

is the Mahalanobis distance, defined in this formula:  

)()
~

()( )(~)()(~min)( )(1)()()( ppTppd µzµzz  . (11)

The Mahalanobis metric provides a sufficient way to 

classify images based on their related characteristics and 

likelihood in each pose class. 

3. Application in 3D Object Recognition 

To evaluate the performance of our proposed methods, 

explained in section 2.2, we developed an application in 3D 

object recognition. The developed system was used to 

recognize seven objects with various horizontal pose 

positions and influenced by geometric and 

quality-degradation effects, such as translation, rotation, 

and motion blur. Samples of 3D objects with various 

translation, rotation, and motion blur effects are shown in 

Fig. 3. 

In the learning stage, the images were first normalized 

into 32 x 32-pixel grayscale images. Then, the system was 

learned with a total of 6,552 images. Each object consists 

of 36 poses with 10-degree intervals of horizontal positions 

(0o, 10o, 20o…350o), and each pose consists of 26 learning 

images with an original camera-captured image and 25 

generated images with various degradation effects. Those 

generated images were obtained by composing artificial 

noises with the MATLAB program, such as left and right 

translations (3, 6, 9, 12, 15 pixels), clockwise and 

counter-clockwise rotations (5o, 10o, 15o, 20o, 25o), and 

motion blur (5%, 10%, 15%, 20%, 25%).  

Eigenspace

Camera       Generated images: 
captured            Translated     Blurred     Rotated  

)(~ )( pµ , )()(
~

p

Calculate mean vector:                 
and covariance matrix: 

)()(
h

p
µ

)()(
h

p
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Figure 4. Recognition accuracies of images with left 

(L) and right (R) translation effects. 
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Figure 5. Recognition accuracies of images with 

clockwise (C) and counter-clockwise (CC) rotation 

effects.
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Figure 6. Recognition accuracies of images with 

motion blur effects. 

Next, those images were projected into the eigenspace, 

and the appearance manifolds were created based on each 

construction method, as explained in section 2.2. We used

spline interpolation technique to interpolate the mean 

vectors and linear interpolation technique to interpolate the 

covariance matrices. 

Finally, we tested the system with input images that were 

different from the learning images (5o, 15o, 25o…355o) in 

horizontal poses and influenced by various types of

degradation effects. For classification, we applied the

Mahalanobis distance, as explained in section 2.3.  

Figures 4, 5, and 6 show a series of the recognition 

accuracies of four methods in recognizing images 

influenced with translation effects, rotation effects, and 

motion blur effects, respectively. All figures indicate that 

the AMPI method and AMVC method, with their 

view-dependent covariance matrices, always achieved 

higher recognition accuracies than the PE method or 

AMCC method. For recognizing non-degraded images, the 

AMPI method achieved 94.05%, while the AMVC method 

achieved 93.65% recognition accuracy. When recognizing 

images with 3 pixels of right translation effects, the AMPI 

method achieved 90.08%, while the AMVC method 

achieved 91.67%. Furthermore, the AMPI method 

achieved 89.68% while the AMVC method achieved 

90.08% when recognizing images with 10-degree 

counter-clockwise rotation effects.  

4. Conclusion and Future Works 

In this paper, we presented the use of an appearance 

manifold with an embedded covariance matrix as a 

technique to recognize 3D objects from images that are 

influenced by geometric and quality-degraded effects. Our 

proposed appearance manifold with view-dependent 

covariance matrix method could outperform the accuracy 

of the simple appearance manifold method. Moreover, 

performing direct covariance matrix interpolation for 

approximation in the AMVC method by some means 

worked effectively and efficiently for a relatively small 

interval of learning pose.  

Our future works include recognizing 3D objects from 

images that are influenced by other types of degradation 

effects, as well as developing a recognition system that 

uses fewer learning image samples by implementing a 

larger interval of viewpoint orientations. 
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