
Probabilistically Semantic Labeling of IR Image for UAV 

Teng Li , Jihwan Woo  
Department of Electrical Engineering, 
KAIST 373-1 Guseong-dong, Yuseong-gu,  
Daejeon, Korea 

tengli, jhwoo@rcv.kaist.ac.kr 

In So Kweon 
Department of Electrical Engineering,  
KAIST 373-1 Guseong-dong, Yuseong-gu,  
Daejeon, Korea 

iskweon@kaist.ac.kr

Abstract

Applying computer vision technology to IR (Infra-Red) 
images for UAV (Unmanned Aerial Vehicle) applications 
is difficult due to its characteristics which differ from 
common image processing. By combining visual 
categorization with low level IR image processing, this 
paper presents a framework for automatic labeling of IR 
images in probabilistic manner. We extract the features 
which contain temperature, texture and orientation 
information from the IR image, model visual categories 
by the distribution of features in terms of an extended 
visual vocabulary, and categorize IR image segments 
probabilistically. The proposed framework is 
demonstrated in experiments with high labeling accuracy, 
for near IR images of urban terrain taken from 100 feet 
altitude. 

1.  Introduction 

Due to the increasing requirement of UAV applications 
such as traffic surveillance, environment monitoring, etc, 
many researchers have tried to improve autonomous flight 
capability of UAV in the last decade [1]. Computer vision 
technology is applied and the UAV needs to carry out 
tasks like obstacle detection, object tracking and motion 
estimation for its navigation [2]. 

 Previous works on UAV have used visible color 
images but the information of visible color images can be 
unavailable when UAV navigates under weak illuminated 
conditions. Compared with visible color images, IR 
images contain more information in the darkness with its 
own advantages. But IR images have low resolution and 
they are noisier than color images thus it is difficult to 
apply computer vision algorithms directly [2].  

In this paper, we propose an autonomous probabilistic 
semantic labeling system for aerial IR images captured in 
urban terrain. This system segments the IR image to 
semantically meaningful regions and probabilistically 
labels the regions with object categories. The resulted 
labeled images can be applied to safe landing place 
detection, building detection and road tracking. Also we 
can incorporate prior semantic knowledge easily based on 
this and take further operations.  

Low level or middle level image processing alone is not 
enough to realize robust semantic labeling for IR images. 
In this paper, we combine high level visual categorization 
with low level image processing and image segmentation 
for this task. 

Visual categorization is a difficult but hot problem in 
computer vision. In recent years, many approaches for this 
topic have been proposed, Several algorithms are built 

around a vocabulary of visual terms and model visual 
categories with the histogram of visual word count [3-6]. 
In this paper, we model and categorize segments of the IR 
image based on such approach. However, what 
distinguishes our categorization from previous works is 
our design of features for IR image processing, combined 
models based on two types of features, and finally, the 
prediction of probabilities that the image region might 
contain categories. We use SVM classifier in probabilistic 
form for this objective. 

2.   System framework 

Figure 1 shows the overall structure of the proposed 
semantic labeling system for IR images. In the training 
process, we extract features and learn visual category 
models from the manually segmented and labeled 
training images. Then given an IR image, we 
automatically segment it to regions, extract the features 
of each region, and categorize these regions based on the 
learned model. This process does not require precise 
segmentation. Unlike the common object categorization 
tasks, we do not predict a single class label for each 
image region, but predict the probabilities that it may be 
composed of categories. Finally, we get a 
probabilistically semantic labeling graph of the IR image.  

In section 3 and section 4 we will present more 
detailed process of feature extraction, visual category 
model training and probabilistic semantic labeling for IR 
images.  

Figure 1.  Overview of the whole system process 
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Figure 2.  An aerial IR image and its Edge map 

3.1.  Feature extraction 

Figure 2 shows an example of manually semantic 
labeling of an aerial IR image using categories as building, 
road or plane, and mountain. The right column shows its 
edge map. We can observe that the intensity value and 
local edge map characterize different categories well. 

Intensity value of each pixel in IR images shows the 
temperature radiation. And we test a number of different 
filter-banks made of Gaussians, first and second order 
derivatives of Gaussians and Gabor kernels for analyzing 
texture and boundary, as a kind of ‘texton’ feature. 
Similar ‘texton’ feature has been used in some of the 
previous works [4].

The filter-banks of texton feature are made of 3 
Gaussians (with =1, 2, 4), 4 Laplacian of Gaussians 
(LoG) (with =1, 2, 4, 8) and 4 first order derivatives of 
Gaussinans (with =2, 4 and into x, y directions). 
Therefore, each pixel in each image is associated with an 
11-dimensional texton feature vector.

The statistics of pixel intensity value in an image 
region contains the global distribution information of 
temperature in the region. While texton feature is relate 
to the texture and linearity of object boundary in the 
region. Combination of the two features can help to 
discriminate confusing regions. It is useful for 
categorizing automatically segmented regions, which 
usually do not contain a pure object category. 

3.2.  Visual categories modeling 

To model the categories of image segments, we use 
the histogram of features in the segment based on a 
visual vocabulary, with an assumption that visual codes 
distributions of a given class are similar. The essential 
idea of this approach is to provide an intermediate 
representation which helps to bridge the semantic gap 
between the low level features extracted from an image 
and the high level classification algorithms [3].  

Figure 3 shows the principles and process of our 
visual category modeling. Given the training set, after 
extracting features, learn a visual vocabulary by 
clustering training features to some visual codes. By 
assigning features of images to the vocabulary with a 
vector quantization algorithm, and counting the number 
of features assigned to each code, we can get a 
distribution (histogram) over the vocabulary for each 
image. Then we apply a multi-class classifier to the 
histogram representation of images, train category 
models and predict the probability that the category 
labels might be assigned to images. 
To make full use of the features, we do not add intensity 
as simply another dimension feature to the texton feature, 
but use different vocabularies for two kinds of features. 
We combine the histograms of the two vocabularies for 
modeling object categories. 

Figure 3.  Visual vocabulary based category model 

3.3.  Visual vocabulary learning 

Several algorithms aiming at constructing an efficient 
visual vocabulary have been proposed [4-6], usually 
based on the clustering or vector quantization algorithms. 

We adopted a simple and efficient k-means clustering 
to learn the visual vocabulary of texton feature. More 
advanced clustering methods exist, but for visual 
categorization task in terms of the vocabulary, these 
algorithms give similar performance. Through 
experiments, the size of vocabulary for texton feature is 
set at 1000.  

For intensity feature, we use 256 intensity values to 
compose the vocabulary.  

Thus, each image region can be represented by a 1256 
bin histogram in terms of this combined vocabulary.  

4.  Probabilistic semantic labeling 

4.1.  Segmentation 

To segment IR images to regions that are semantically 
meaningful, we use K-means cluster algorithm. The 
input image is grouped into 4 regions by using intensity 
value. We apply the categorization algorithms for the 
resulted regions with grouped pixels. Each pixel has the 
intensity and texton feature. 

Figure 5 displays an example of the segmentation 
result. Most resulted regions contain mainly one or two 
categories that high accuracy labeling is possible. 

4.2.  Classification and probabilistic labeling 

After assigning features to the clusters of visual 
vocabulary and getting the histogram representation, we 
apply the mutli-class training and classification 
algorithms directly. We use Naïve Bayes classifier for its 
simplicity and high speed, and Support Vector Machine 
for its excellent performance in many classification 
problems. 
4.2.1.  Naïve Bayes classifier 

Given a set of labeled image regions }{ iRR  and a 
visual vocabulary }{ iVV . Each pixel in a region is 
assigned to a code of the vocabulary to which it lies the 
closest. Write the number of times code tV  occurs in 
region iR  as ),( itN . Then calculate the predict score 
that region iR belongs to category jC :

(1)

The conditional probabilities of code tV given 
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category jC  are computed according to the formula 
below, with Laplace smoothing: 

(2)

4.2.2.  Support Vector Machine (SVM) 
We adopt one-against-one strategy to apply SVM 
classifier for multi-class classification problem. ‘RBF’ is 
chosen as the kernel type. In our application to IR image, 
‘RBF’ kernel shows good performance. 

Originally SVM predicts only class label but not 
probability information. For our study, we use a method 
of producing probabilistic outputs proposed by Wu, et al 
[7]. 

Given k classes of data, for any x , the goal is to 
estimate 

(3)

Firstly estimated pairwise class probabilities 

(4)

using an improved implementation:  

(5)

Where A and B are estimated by minimizing the 
negative log-likelihood function using known training 
data and their decision values f̂ . Obtain ip from all these 

ijr s by solving the following optimization problem (For 
the details of this process, please refer to [7]): 

(6)

4.3.  Probabilistic labeling 

Since segmentation algorithms can not perfectly 
segment images to semantic regions, there is usually a 
mix of categories in a region. We predict the probabilities 
that a segmented region may contain object categories, 
and label the region with probability of categories. Only 
the main categories whose relative probability is above a 
threshold are considered as meaningful.  

5. Experiments and Discussion 

The dataset used in experiments contains 500 near IR 
images of urban terrain captured from 100 feet altitude. 
We randomly select 47 images and precisely mark four 
kinds of object category regions: road or plane (R&P), 
building, water and mountain. We mark and label 30 
regions for each category for training. To test our 
categorization algorithm, we coarsely mark 17 regions in 
other images and label as a validation set. 

To evaluate the performance of our labeling system, 
we label 108 automatically segmented regions from 27 
images, which are randomly selected and different from 
the training images. Segmented regions mainly 
composed of one category are labeled with one class no., 
and regions which are not pure are labeled with two 
candidate: the first class no. and the second. 

          (a)                          (b) 

(c)                     (d) 

Figure4. IR image and manually labeling example: (a), 
(c): original images (the size is 320 240); (b), (d): 
the precise labeling of (a) and (c) respectively for 
training (best view in color). 

Table 1 gives the comparison of our feature for IR 
images with SIFT and GRIF descriptors, which are 
popular in object categorization [8, 9]. We densely 
sample 10 10 patches in the image, sampling interval is 
set as 5, and compute SIFT and GRIF descriptors for 
each patch. Patches which have more than 60% pixels in 
a marked region are considered as belonging to this 
region. We build vocabularies of size 1000 for SIFT and 
GRIF respectively, and categorize feature histograms of 
regions based on the vocabularies. We get the 5-fold 
cross validation rate on training set. Obviously our 
feature set is more suitable here.  

The last row of table 1 also gives the result of 
classifying individual features of categories directly, 
using SVM classifier. We can see the effect of our region 
modeling method by comparison. 

Table 2 shows the SVM classification accuracy rates 
when we use intensity feature only, texton feature only 
and both. We evaluate the accuracy rates by three 
methods: five fold cross validation rate of training set, 
classification accuracy on validation set and test set. 
Here for test set, we only consider the first candidate 
label of regions. The combined feature is better than any 
single feature alone, especially on the test set. Intensity is 
good for pure marked regions, but not robust for mixed 
regions. 

Note that some automatically segmented regions 
contain two main categories, and we have two candidate 
labels for these test regions. In table 3, we give the 
accuracy rates with assumption that resulting in the 
second label candidate is also correct. We compare the 
performance of Naïve Bayes and SVM, using the 
combined feature. 

Table 4 gives the confusion matrix of classification of 
segmented regions when only the first candidate label is 
considered, using SVM and the combined feature. 

To evaluate our probabilities output, we manually 
mark three regions for each category. Table 6 shows the 
output probabilities of these regions through different 
classifiers.

Figure 5 shows the segmentation result and in table 5 
we give the probabilistic labeling result from SVM and 
Naïve Bayes classifier. There are four candidate labels 
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for each segment: Road or Plane (R&P), Building, Water 
and Mountain. We only label the candidates whose 
probability is above 20%.  

The probabilistic output depends on the learned model, 
i.e., model parameters and training data affect the result. 
Our output can roughly represent the relative proportions 
of contents in the region, and we can adjust according to 
different application situation. 
  The classification performance of SVM classifier is a 
little better than Naïve Bayes classifier. However, Naïve 
Bayes is more effective considering speed. They provide 
two good choices for further works based on the 
proposed framework. 

6.  Conclusions and Future Work 

In this paper, we have presented a framework for 
automatically probabilistic labeling of IR image for UAV. 
To this aim, we extracted features which characterize IR 
image regions well and incorporate the up to date visual 
categorization ideas. The proposed system gave high 
accuracy rates in experiments. The resulted semantically 
labeled IR images can be useful for diverse UAV 
applications.  

In the near future, we will make a model which 
incorporates the spatial context information of the IR 
image and improve a matching algorithm by using these 
semantic labeling. Because finding point matching is 
difficult in IR image, the semantic labeling system 
proposed is expected to expand the domain of IR 
applications. 
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Table 1. Performance comparison using different feature 
sets and model methods on training set. 

 SIFT GRIF Tex. Inten.+Tex.

Histogram 77.9% 81.1% 84.2% 95.8% 

Single 56.2% 56% 47% × 

Table 2.  Classification result of different features. 

SVM classification accuracy 
Feature 5-fold 

c.v. 
Validation 

set
Test set

Intensity 95% 88.2% 70.4% 

Texton 84.2% 82.4% 58.3% 

Intensity+Texton 95.8% 88.2% 83.3% 

Table 3.  Recognition result. 

Classification accuracy Classifier

1 candidate 2 candidates 

Naïve 81.5% 93.5% 

SVM 83.3% 94.4% 

Table 4. Confusion matrix for 4 categories (1 candidate). 

Inferred label True 
label R&P Building Water Mountain

R&P 22 9 0 0 

Building 3 41 0 0 

Water 0 0 21 0 

Mountain 6 0 0 6 

        (a)                    (b) 
Figure 5.  Automatic segmentation result. (a): an IR 
image; (b): segmentation result of (a)(best view in color). 
Corresponding probabilistic labeling is given in table 5.  

Table 5.  Probabilistic labeling for image segments: ‘R’, 
‘B’, ‘G’ and ‘Y’ correspond to red, blue, green and 
yellow segments in figure 5 respectively. 

 SVM Naïve 

Segment 1st label 2nd label 1st label 2nd label

R
Water 
45.5% 

R&P 
37.9% 

Water 
74.1% 

Building
27.7% 

G
R&P
95% 

×
R&P

94.1% 
×

B
Building

94% 
×

Building 
69% 

R&P
30.9% 

Y
Building

97% 
×

Building 
91.3% 

×

Table 6. Average output probabilities of different 
categories for manually marked regions. 

Classifier R&P Building Water Mountain

SVM 88% 93.7% 84.9% 90.7% 

Naïve 83.8% 88.5%× 89.7% 97%× 
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