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Abstract

This paper presents a segmentation method for detecting

cells in immunohistochemically stained cytological images.

A two-phase approach to segmentation is used where an un-

supervised clustering approach coupled with cluster merg-

ing based on a fitness function is used as the first phase to

obtain a first approximation of the cell locations. A joint

segmentation-classification approach incorporating ellipse

as a shape model is used as the second phase to detect the

final cell contour. Results of segmentation are presented

and compared to ground truth measurements.

1. Introduction

Pathologists often make diagnostic decisions by observing

cells and their spatial distributions in the biological speci-

men, in particular, the geometric parameters of the cell such

as the area, radius, and the circumference [1]. Thus, in

an automated system it is very useful to accurately mea-

sure the geometric parameters of the biological specimen.

As a precursor to accurate measurement, segmentation of

cells is required. Automatic cell segmentation is one of

the most interesting segmentation problems due both to the

complex nature of the cell tissues and to problems inherent

to microscopy. Cytological images for immunohistochemi-

cal analysis, share the following characteristics:

• Poor contrast, i.e., cell gray levels may be close to that
of background;

• Many cluttered cells in a single view. A high number
of occluding cells make image segmentation difficult;

• Low quality. Traditional staining techniques introduce
a lot of inhomogeneity into the images, where not all

of the parts of the same tissue or cells are equally

stained.

Figure 1 shows a Papanicolaou stained cytological speci-

men indicating follicular carcinoma where in the charac-

teristic problems are clearly evident. Image analysis ap-

proaches to cell segmentation are typically based on local

image information such as regions, edges, histograms, or

clusters [2, 3]. Edge-based or gradient-based segmentation

methods rely on the idea of discontinuity of image intensi-

ties or texture at the boundary between different objects.

Histogram-based and unsupervised clustering algorithms

for image segmentation have been successful for those im-

ages with uniform illumination or other mapped discrim-

Figure 1: Image of a stained cytological smear.

ination features. Region-based algorithms employ region

growing, region splitting and merging to separate differ-

ent objects with homogeneous intensities. The edge-based

methods and clustering approaches are generically sensitive

to image noise and artifacts. The region-based algorithms,

which are less sensitive to image noise, are usually compu-

tationally more expensive. These approaches are generally

not applicable to cytological images because the grey level

intensity of a cell image does not vary only on the bound-

ary, but also within cells and throughout the background

(see figure 1). Methods for segmentation that use region-

based information are not applicable here because not all

parts of the same tissue or cell cluster are equally stained.

Darker background regions may be misclassified as cells

and lighter cell regionsmay be misclassified as background.

Edge-based segmentation methods are also not useful since

boundary extraction does not provide good delineation of

the cell boundary due to lack of contrast between the cell

and background across all cells present in the image. Para-

metric techniques such as Hough transform based meth-

ods [4] have also not been successful for the same reasons.

Traditional image analysis methods have viewed seg-

mentation as a low-level operation decoupled from higher

level operations such as classification. However, the two

processes are closely related. Each can be improved with

information that the other provides. Such realization have

been proposed in the domains of chromosome segmenta-

tion [5]. In this paper, we present a two-phase approach to

segmenting cells in immunohistochemical stained cytolog-
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ical images. We use an unsupervised clustering approach

coupled with cluster merging based on a fitness function in

the first phase to obtain a first approximation of the cells

location. A joint segmentation-classification approach in-

corporating ellipse as a shape model is used in the second

phase to detect the final cell contour. Specifically, the first

phase formulation is based on the use of representative-

based clustering coupled with cluster merging using prox-

imity graphs. Second phase formulation is based on the

Level Set approach proposed by Osher and Sethian [6] cou-

pled with a feature-based classification model and the ellip-

tical shape prior.

The remainder of the paper is organized as follows: sec-

tion 2 describes the method to obtain a first approximation

of the cell location. The algorithm yielding the final cell

contour based on the level-set formulation is discussed in

section 3. Section 4 outlines the experiments that were per-

formed, and the results of segmentation. Finally, conclu-

sions and a summary of our proposed approach appear in

section 5.

2. Clustering and Cell Localization

The objective of the first phase analysis of cytological im-

ages is to find a set of locations corresponding to the cells of

interest. We utilize the K-Means clustering algorithm that

hierarchically splits the color space containing colors from

the cells and background regions. One of the limitations

of unsupervised approaches like K-Means is the inability

to predict the true number of clusters as well as the lack

of arbitrary cluster shape representation. We address this

problem based on post-processing of the realized clusters,

leading to a merge criteria to realize the final localization of

cells.

Due to the variability in staining techniques for cytolog-

ical images, the separation of cells and background is not

apparent and surely not realized as distinct clusters. We uti-

lize a post-processing technique that is similar to agglomer-

ative hierarchical clustering in that we iteratively merge two

candidates. However, it differs from a hierarchical cluster-

ing algorithm in that it merges neighboring clusters that en-

hance a given fitness function the most, and not necessarily

merges clusters that are closest to each other. We define a

fitness function that utilizes the principles of cohesion and

separation. The fitness function used is

Q(x) = Separation(x)δ/Cohesion(x)(2−δ) (1)

where, Separation(x) is defined as the ratio of total
inter-cluster distances across all clusters to the inter-cluster

distance of the cluster of interest, and Cohesion(x) is the
ratio of the total intra-cluster distances across all clusters to

the intra-cluster distance of the cluster of interest. The dis-

tances are measured as the L2-norm between a point in the

cluster and the cluster center. In general, separation mea-

sures how well-separated a cluster is from other clusters

while cohesion measures the tightness of a cluster. Hence,

δ weighs the importance of distinct clusters to cluster com-
pactness. The overall process of localization starts by real-

izing clusters using the K-Means clustering algorithm with

a large k value. Next, using the cluster representatives, a
proximity matrix is constructed using Gabriel-graphs. An

entry is 1 in the proximity matrix, if two clusters are neigh-
boring. Next, given all the possible merge candidates (in-

dicated by an entry of 1 in the proximity matrix) the two
maximizing the measure of fitness according to equation 1

are merged to form a new cluster. This process is repeated

till only two clusters remain or the fitness measure stops

improving. The final clustering results in the optimal sepa-

ration of cells and background.

All pixels labeled as cells are separated into a new image

and a blob coloring operation performed to count the total

number of regions. Each region is than isolated as a new

image for the next stage in segmentation.

3. Variational Segmentation Model

Variational methods have been developed as an approach

to image segmentation that aim at minimizing the segmen-

tation energy E represented by a real value. The segmen-

tation energy generally measures how smooth the regions

are, the similarity between the segmented image and the

original one and the similarity between the obtained edges

and the discontinuities of the original image. The basic

idea is to start with initial boundary shapes represented

in a form of contours given as C(s) = {(x(s), y(s)) :
0 ≤ s ≤ 1}, and iteratively modify them by applying

shrink/expansion operations according to the constraints of

the image. Those shrink/expansion operations, called con-

tour evolution ∂C/∂t, can be performed by the minimiza-
tion of an energy function or by the simulation of a ge-

ometric partial differential equation (PDE). Level set ap-

proaches proposed by Osher and Sethian [6] move contours

implicitly as a particular level, usually the zero level, of

a function φ(x, y) defined on the spatial domain, such as
C ≡ {(x, y) : φ(x, y) = 0}, ∀(x, y) ∈ Ω where Ω denotes

the entire domain of an image I(x, y). Therefore, the evo-
lution of a level set function ∂φ/∂t represents the evolution
of a set of contours ∂C/∂t, and the contours C partition

the image plane Ω into two subsets {Ωin, Ωout} accord-
ing to the sign of the level set function φ(x, y). Also, the
defined contours can split or merge according to its topo-

logical changes as the level set function φ(x, y) grows or
shrinks.

The Mumford-Shah model [7] has been regarded as

a general model within variational segmentation meth-

ods. According to Mumford-Shah ′s conjecture, the image

segmentation is a variational problem of finding an opti-

mal piecewise-smooth approximation f(x, y) of the given
scalar image I(x, y) and a set of boundaries C, such that
the approximation f(x, y) varies smoothly within the con-
nected components of the subsets excluding the boundaries

Ω\C. Chan and Vese proposed piecewise constant active
contour model [8] based on Mumford-Shah segmentation

model [7], given by

∂φ(x, y)

∂t
= δε(φ(x, y))[νκ(φ(x, y)) (2)

−(I(x, y) − µ1)
2 + (I(x, y) − µ2)

2],
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where δε(.) denotes the regularized form of Dirac delta

function, and {µ1, µ2} denotes the mean of the image in-
tensity I measured at the inside and the outside of the con-
tours. Mumford and Shah proposed to solve the variational

segmentation problem by minimizing the following global

energy function:

E(f, C) ≡

∫

Ω

|I(x, y) − f(x, y)|2dxdy (3)

+µ

∫

Ω\C

|∇f(x, y)|2dxdy + ν|C|

The variational boundaries C have the role of approximat-

ing the edges of I(x, y) by smoothing f(x, y) only onΩ\C.
The minimization of the global energy function approxi-

mates the image I(x, y) with f(x, y), smoothes f(x, y),
and reduces the length of boundaries |C|. The global energy
function given in equation 3 for all regions can be general-

ized by:

E(f, C) ≡
∑

i

∫

Ωi

ei(x, y)dxdy (4)

+µ

∫

Ωi\C

|∇fi(x, y)|2dxdy + ν|C|,

where the objective function ei(x, y) determines the con-
dition of region-based segmentation for each subset Ω i for

the piecewise-constant contours shown in equation 2.

3.1. Shape-Classification Model

Our goal here is to extend the energy functional 4 in order

to force the level set to segment only the regions of inter-

est, namely the cells constrained by specific image features

and a known parametric shape. This is done in general by

modifying the objective function e i(x, y) and adding a term
Eshape to the global energy function that measures how

well the level set represents the cell.

Let the (vector-valued) image intensity I be a multidi-

mensional random variable given by I ∈ �B where B de-

notes the dimension of the image intensity I, which is also

equivalent to the number of features extracted from the im-

age I(x, y). We propose an objective function to measure
how much an image pixel is likely to be an element of a

subset using a probability density function (PDF) estimated

from training samples. The objective function is given by

ei(x, y) ≡ − log(pi(I(x, y) + P (Ωi)), ∀(x, y) ∈ Ω, ∀i,
(5)

where pi(I) : �B → � denotes the multivariate conditional
PDF of a vector-valued image intensity I on the condition

that the image pixel I(x, y) is an element of the subset Ωi,

and P (Ωi) denotes the a priori probability of the subset Ω i.

Based on the energy function shown in equation 4, mini-

mizing the energy function E is equivalent to maximizing

the a posteriori probability Pi(I(x, y)) for each subset Ωi.

Most human cells have elliptical shaped boundaries, but

given the image quality, difficult to observe. As has been

indicated previously, the ill-posed problem of this form can

be solved by imposed parameter constraints in the form

of a priori information. In a model-based approach, cell

image segmentation can be cast as a parameter optimiza-

tion problem. If the model parameters of a cell boundary

are determined, we can reconstruct the segmented image,

which is used to extract meaningful geometric parameters

for pathologists. To impose such a priori knowledge, we

use the implicit form of the ellipse equation to describe the

cell boundary.The segmentation according to an ellipse then

is equivalent to the recovery of five parameters, where the

space to be optimized is given byΘ = [a, b, θ, x0, y0]where
(x0, y0) denotes the center of the ellipse, θ denotes the ori-
entation of the ellipse, and a, b denote the major and minor
axis of the ellipse, respectively.

Segmentation based on explicit incorporation of cell

classification and its shape representation is now equiva-

lent to deforming an ellipse according toΘ so it is attracted

to the desired image classification. Within this formula-

tion, the smoothness constraint is automatically ensured

and therefore not needed from the original Mumford-Shah

model. Hence, the modified global energy functional is

given by:

E(f, C,Θ) ≡
∑

i

α

∫

Ωi

Eclass + β

∫

Ωi

Eshape (6)

+µ

∫

Ωi\C

|∇fi(x, y)|2dxdy,

where

Eclass =

∫

I

− log(pi(I(x, y) + P (Ωi))dxdy, (7)

Eshape =

∫

Θ

1 − [(
[(x − x0) cos θ + (y − y0) sin θ]2

a2
(8)

+
[(x − x0) sin θ + (y − y0) cos θ]2

b2
)]

1

2 dxdy,

and α and β weight the contribution of the classification

and shape information in the energy functional.

3.2. Curve Evolution

By setting the contour pixels as an element of interior sub-

set, such as Ω ≡
⋃

i Ωi, each subset on the spatial domain

can be identified by a set of binary identity functions

χi(x, y) ≡

{

1, if(x, y) ∈ Ωi

0, otherwise

}

, ∀i, (9)

composed of a group of regularized unit step functions

{Hj} given by

Hj ≡ Hε(φ(x, y)) ≈

{

1, ifφj(x, y) ≥ 0
0, ifφj(x, y) < 0

}

, (10)

for ∀(x, y) ∈ Ω, ∀j. Using the identity function, the inte-
gration over each subset Ωi is generalized to the integration

over the entire image plane Ω. Also, the shape of contours
Cj is equivalent to the integration ofEshape over the image

plane where Cj denotes a set of active contours formed by

430



the corresponding level set function φj(x, y). The global
energy function of the level set contour model and the asso-

ciated Euler-Lagrange equation obtained by minimizing the

energy function E with respect to φ = φ1, . . . , φj , . . . , φJ

in [8] can be extended for our proposed global energy func-

tion as

E =

m−1
∑

i=0

α

∫

Ω

Eclassχi(x, y)dxdy + (11)

β

∫

Ωi

Eshapeχi(x, y)dxdy +

µ

∫

Ω

fi(x, y)χi(x, y)dxdy,

and

∂φj(x, y)

∂t
= δj [−µ −

m−1
∑

i=0

αEclass

∂χi

∂Hj

(12)

−

m−1
∑

i=0

βEshape

∂χi

∂Hj

], ∀j,

where δj ≡ δε(φj(x, y)). The proposed contour evolution
model is obtained by solving for the relevant objective func-

tionsEclass andEshape shown in equations 7 and 8, respec-

tively, into the contour model shown in equation 12, given

by

∂φj(x, y)

∂t
= δε(φ(x, y))[−µ − (13)

α(

m−1
∑

i=0

Pi,cell(I(x, y)) −

m−1
∑

i=o

Pi,bckg(I(x, y))) −

β(

m−1
∑

i=0

(1 −
√

(A/a)2 + (B/b)2))]

where, A = (xi − x0) cos θ + (yi − y0) sin θ and B =
−(xi−x0) sin θ+(yi−y0) cos θ. The solution to the Euler-
Lagrange is implemented using gradient descent where the
parameters for the ellipse, Θ, are solved at each iteration of
the level set evolution, given as:

∂a

∂t
= −

∫

Ω

δε(φj(x, y))A(1/a3)dxdy (14)

∂b

∂t
= −

∫

Ω

δε(φj(x, y))B2(1/b3)dxdy

∂x0

∂t
= −

∫

Ω

δε(φj(x, y))(A cos θ/a2) − B sin θ/b2)dxdy

∂y0

∂t
= −

∫

Ω

δε(φj(x, y))(A sin θ/a2) + B cos θ/b2)dxdy

∂θ

∂t
= −

∫

Ω

δε(φj(x, y))(AB[1/b2 − 1/a2])dxdy.

3.3. Image Features and Pixel Classification

The objective of the energy function Eclass is to partition

the image such that the local image statistics within the cell

and background are ”close” to the global statistics within

the same class across the image. This is expressed accord-

ing to Bayesian decision rule formulated as the maximum a

posteriori solution. In deriving the Bayesian classifier, low-

level features of the image are computed as characteristics

in defining the likelihood function. Specifically, color and

texture features are computed from the color image and the

converted gray-level image, respectively. For the color fea-

tures, we use 1976 CIE L∗a∗b∗ color space separated into

luminance and chrominance channels. Color distribution is

modeled with histograms constructed with kernel density

estimates. Histograms are compared with the χ2 histogram

difference operator [9] to obtain a feature for each pixel.

A brightness cue is also computed based on the use of L∗

histogram for each pixel. Once again, the actual feature

for each pixel is the χ2 histogram difference. Texture fea-

tures used are computed from the gray-level image based on

gray-level co-occurrence matrices, fractal measures, Law’s

texture measures, gradient structure tensors, and Gabor fil-

ters [10]. The likelihood functions for the cell region and

background are modeled using a mixture of Gaussians [10]

and the priors computed as a ratio of the average number of

cell pixels to background pixels in the training image set.

4. Results

The proposed method has been evaluated to segment im-

munohistochemically stained cytological smears for thy-

roid lesions. A total of 50 images were available, each
manually segmented to delineate the cells of interest. 10
images with sufficient variability in background and stain

conditions were used to compute low-level image features

and generate the likelihood models and estimates of prior

probabilities to be used in cell-background classification

(section 3.3). In addition, the specific stain color used to

localize cells of interest was also noted to select the appro-

priate cluster as a result of the localization step described in

section 2.

The learned parameters were used to automatically seg-

ment the remaining 40 images. Each localized region was
isolated as a new image to be segmented. The center of

the isolated region and 1/4 of the region height and width
was used to initialize the level set contour. The contour

was evolved according to the equations in section 3.2 to

obtain the final segmentation where each region was parti-

tioned into two subsets Ωin, Ωout based on the zero level

set. Figure 4 shows three representative localized regions

and the corresponding cell segmentation obtained based on

the proposed level set model. Images used for test resulted

in cell segmentation accuracy rate of 92.1% with a missed

segmentation rate of 4.3% and a false segmentation rate of

2.7%. The segmentation errors encountered were primarily

due to the failure of the localization stage in identifying the

correct region of interest.

5. Summary and Conclusions

We have proposed an advanced segmentation method us-
ing curve evolution based on level set theory combined
with a Bayesian classification model and a priori shape
knowledge. A two-phase approach to segmenting cells

431



Figure 2: Segmentation of three cells within the corre-

sponding localized regions. The top row shows the local-

ized regions and the contour initialization. The bottom row

shows the final contour for each of the regions.

in immunohistochemical stained cytological images is pre-
sented. An unsupervised clustering approach coupled with
cluster merging based on a fitness function is used as the
first phase to obtain a first approximation of the cells loca-
tion. A joint segmentation-classification approach incorpo-
rating ellipse as a shape model is used as the second phase
to detect the final cell contour. For pixel-classification, the
segmentation model estimates a multivariate density func-
tion of low-level image features from training samples and
uses it as a measure of how likely each image pixel is to
be a cell. This estimate is constrained by the zero level set,
which is obtained as a solution to an implicit representation
of an ellipse. The developed method is tested on 40 cyto-
logical images of thyroid lesions and results compared to
manual delineation of cells.
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