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Abstract

This paper describes a new, powerful technique of fin-
gerprint verification based on a perturbation method.
The proposed method consists of four parts. The first
part performs local FFT band-pass filtering to enhance
the cyclic ridge structure in respective local areas. The 
second part is optimal block-wise shift for preliminary
matching. Then, the third part is application of GAT cor-
relation to realize affine-invariant shape matching.
Finally, the fourth part is detail matching by perturba-
tion. The key ideas of our perturbation method are in
three ways: extraction of core points from enrolled fin-
gerprint images, setting local windows around the core
point, and asynchronous perturbation of local windows
for optimal detail matching between input and each en-
rolled fingerprint images. How to design the size of local
windows, the range and direction of perturbation, and
the matching criteria is crucial to the success of the pro-
posed method. Experimental results using the public
FVC2000 fingerprint image database demonstrate a
sufficiently low equal error rate (EER) of 5.55% for false
rejection and false acceptance comparable to those ob-
tained by competing works.

1. Introduction

Identification of individuals based on their biological
or behavioral characteristics, called biometrics, has lately
been receiving increased attention. Accurate personal
identification could deter crime and fraud, streamline
business processes, and save critical resources. Here,
biometrics includes face, fingerprint, hand geometry, iris,
retinal pattern, voiceprint, hand vein, etc [1].

In particular, fingerprint verification [2] is the most
prevalent with a biometric market share of 43.6% in 
2006 [3]. These factors include: the fact that fingerprints
are unique, small and inexpensive fingerprint capture
devices, fast computing hardware, recognition rate and 
speed to meet the needs of practical applications.

Conventional fingerprint verification techniques are
divided into two major approaches: minutiae matching
versus pattern matching. The former approach extracts
minutiae, i.e., ridge endings and bifurcations, and com-
pares neighborhoods of nearby minutiae based on their
loci, types, and directions for similarity between input and 
enrolled fingerprints. On the other hand, the latter ap-
proach performs matches on the basis of the local or
global ridge pattern of the fingerprint.

Wakahara et al. [4] described a hierarchically unified 
fingerprint verification system of minutiae matching and
pattern matching with emphasis on extraction of ridge 

direction distribution. Also, Hatano et al. [5] introduced
the powerful idea of perturbation matching to improve the
discrimination ability of fingerprint pattern matching.

This paper proposes a new, powerful pattern matching
based method of fingerprint verification featuring an
extended version of perturbation matching. The proposed
method is composed of four hierarchically connected
processes: local FFT band-pass filtering for image en-
hancement, optimal block-wise shift for global matching,
GAT correlation [6] for absorbing linear distortion, and
enhanced perturbation for detail pattern matching. We
demonstrate successful experimental results using the
public FVC2000 fingerprint image database.

2. FVC2000 fingerprint database

The fingerprint database we used in experiments was
released for FVC2000 (Fingerprint Verification Compe-
tition) [7]. The database consists of four sections (DB1, 
DB2, DB3, and DB4) and we used DB1 that was collected
by low-cost optical sensor. This database has 110 fingers
and 8 impressions per finger (880 fingerprints available).
All fingerprints are 8-bits gray-scale images and the size
is 300 300 pixels. In experiments, we resized each im-
age to 256  256 pixels.

3. Fingerprint enhancement via local FFT
band-pass filtering 

Band-pass filters are used to pass only the dominant
frequencies representing the periodicity of ridge patterns
of each fingerprint image and selectively enhance their
power components. Furthermore, we apply FFT
band-pass filtering to respective local areas (16  16 pix-
els) overlapping each other and combine those filtering
results by appropriate weighting. The advantage of local
FFT band-pass filtering over global one is due to the fact
that the dominant orientation of ridges in local areas is
sharply located respectively.

Figure 1 shows examples of fingerprint enhancement
by the proposed local FFT band-pass filtering method.

(a) (b)

Figure 1. Examples of fingerprint enhancement
as applied to typical degradations, (a) and (b).
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4. Preliminary matching using optimal
block-wise shift and GAT correlation

Block-wise shift is based on gradient feature matching.
First, the enhanced fingerprint image is divided into 16
16 blocks each of which has 16  16 pixels. Next, we
calculate gradients by Roberts’s cross-gradient operators
[8] at each pixel. Then, a histogram of gradient directions
quantized into 16 levels in each block is used as a gradi-
ent feature of the fingerprint image. Finally we match the
input image against the enrolled fingerprint image by
block-wise shift using an average inter-block distance
D( ) given by

where  specifies a block-wise shift, and  and 
denote the input fingerprint feature at the (k+ )-th

block and the enrolled fingerprint feature at the k-th
block, respectively. N( ) denotes the number of matched
blocks between input and enrolled images for the shift .
Finally, the shift  that minimizes the value of D( ) de-
termines an optimal block-wise shift.
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GAT correlation [6] was introduced as a powerful
computational model for determining an affine-invariant
correlation value between two gray-scale images using
the successive iteration method.

Here, we adopt the correlation value between input
and enrolled fingerprint images using not gray levels but
the above-mentioned gradient features. Then, the GAT
correlation technique determines the optimal affine pa-
rameters that maximize the correlation value between the
GAT-superimposed input fingerprint image and the en-
rolled fingerprint image. As a result, components of
rotation, scale change, shearing, and translation are ab-
sorbed between input and enrolled fingerprint images.

Figure 2 shows an example of preliminary matching
using optimal block-wise shift and GAT correlation.

(a) (b) (c)  (d)

Figure 2. Example of preliminary matching. (a)
Input fingerprint image. (b) Optimal block-wise
shift. (c) GAT correlation matching. (d) Enrolled
fingerprint image.

5. Verification using perturbation method 

We propose a new perturbation method with the aim of
detail verification between input and enrolled fingerprint
images after preliminary matching. The proposed method
consists of three steps: setting of local windows around
core point, asynchronous perturbation of local windows,
and employment of appropriate matching criteria for the
perturbation matching.

5.1. Setting of local windows around core point 

Core point is defined as “the north most point of the

innermost ridge line” [2]. In our proposed method, we
extracted a single core point for each of enrolled finger-
print images manually.

Next, we set four local windows for perturbation
around the core point because the most distinctive char-
acteristics of each fingerprint image appear around the
core point. Concretely, each local window is located
symmetrically around the core point excluding the cen-
tral area of 10 10 pixels. The size of each local window
ranges from 25  25 pixels to 50  50 pixels.

Figure 3 shows examples of setting of local windows
around the core point.

Figure 3. Examples of setting of local windows
around the core point. White circles denote the
manually extracted core points.
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5.2. Selection of perturbation direction and 
dimension

The aim of asynchronous perturbation of four local
windows is to absorb non-linear distortion and realize
pixel-wise minute matching between input and enrolled
fingerprint images. Hence, appropriate selection of per-
turbation direction and dimension is crucial to the
success of the proposed perturbation method. We pro-
pose two different ways as follows.

The first one is use of a single perturbation direction
perpendicular to the dominant ridge direction in each
local window. The dominant ridge direction is deter-
mined by evaluating gradients at all pixels in the local
window. Then, based on the investigation of intervals
between adjacent ridge lines of fingerprints in the data-
base FVC2000 DB1, we set the maximum dimension of
perturbation in perpendicular direction at 12 pixels twice
the average interval between ridge lines. Hence, the total
number of back and forth perturbation is 25 (= 2  12 +
1) for each local window.

The second one is use of all directions in perturbation
of local windows. Namely, each local window is moved
around horizontally and vertically. Here, we denote the
maximum dimension of perturbation by R. As a result,
the total number of perturbation in all directions amounts
to (2R + 1)2. In experiments, we tried three values of R,
i.e., 15, 20, and 25. 

5.3. Matching criteria 

We adopt an average of pixel-wise gray-scale differ-
ence in each local window as a matching measure. Here,
the average of gray-scale difference, dk, for the k-th local
window, is given by

where fk(i, j) and gk(i, j) denote gray levels of input and
enrolled fingerprint images within the k-th local window,
respectively. N denotes the number of pixels in the local
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window.
The perturbation method makes the most of the fact

that due to the cyclic ridge structure the values of dk also 
change cyclically as the local window moves through
perturbation in a particular direction if the input finger-
print is genuine. On the other hand, the values of dk do 
not exhibit the cyclic change if the input fingerprint is 
taken from an impostor.

Figure 4 shows relations between averages of
gray-scale difference and perturbation in a particular
direction.

 (a) (b)

Figure 4. Relations between average values of
gray-scale difference and perturbation in a par-
ticular direction. (a) Maximum gray-scale
difference. (b) Minimum gray-scale difference.

Figure 5. A typical scatter diagram of values of
Max  Min vs. Min.

Here, we denote the maximum and minimum values
of averages of gray-scale difference by Max and Min,
respectively.

Then, from Fig. 4, it is found that the value of Min is 
very small and the value of Max  Min is very large if
the input fingerprint is genuine. On the other hand, the
value of Min is rather large and the value of Max  Min 
is small if the input fingerprint is taken from an impostor.

From the above consideration, we propose the match-
ing criteria that the input fingerprint is classified as a 

genuine one if

(3)MinMax&Min 21 ,ThTh

where Th1 and Th2 denote threshold values.
Figure 5 shows a typical scatter diagram of values of

Min vs. Max  Min obtained by preliminary experiments
made on 56 genuine pairs and 6,976 impostor pairs.

From Fig. 5, we can say that the above-mentioned
matching criteria of (3) are promising. Optimal threshold
values, Th1 and Th2, are determined in experiments.
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6. Experimental results

We used a total of 880 fingerprints (110 fingers and 8
impressions) in FVC2000 DB1. Hence, in our fingerprint
verification experiments we had a total of 110  8  7 
(=6,160) genuine pairs and a total of 110  8  109  8 
(=767,360) impostor pairs.

We evaluated the accuracy of the proposed method in
terms of values of False Acceptance Rate (FAR) and 
False Rejection Rate (FRR) by varying two threshold
values of Th1 and Th2 of (3).

Figure 6 shows ROC (Receiver operating characteris-
tic) curves obtained by two different ways of
perturbation: perpendicular direction vs. all directions.

Figure 6. ROC curves.
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From Fig. 6, it is clear that the perturbation method
based on perturbation in all directions is far superior to
that based on perturbation in a single perpendicular di-
rection to ridge lines in each local window.

Table 1 shows Equal Error Rate (EER) and average
matching time by the proposed perturbation method fea-
turing perturbation either in perpendicular direction or in
all directions. As described in 5.2, regarding the way of
perturbation in all directions we tried three values of R,
the maximum dimension of perturbation. Also, the aver-
age matching time specifies the processing time required
only for the perturbation method on a 3.0GHz Pentium 4.

From Table 1, it is first found that perturbation in all
direction surpasses perturbation in perpendicular direc-
tion to ridge lines in EER although the former is properly
more time-consuming. The EER of around 5.5% by the
former perturbation method (R=20.0) was obtained at 
Th1 = 53.2 and Th2 = 23.6. On the other hand, the EER of
8.32% by the latter perturbation method featuring per-
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pendicular perturbation was obtained at easier threshold
values of Th1 = 63.6 and Th2 = 15.4.

It is also found that the EER of the perturbation
method in all directions did not change markedly as a
function of the maximum dimension of perturbation, R.
As was expected, the computational cost increased in
proportion to (2R + 1)2.

Finally, the obtained EER of 5.55% is comparable to 
those in the top group of FVC2000 [7].

The total processing time required for matching be-
tween input and each enrolled fingerprint images was
5.29 sec on average (4.40 sec for enhancement, 0.46 sec
for preliminary matching, and 0.43 sec for perturbation),
while the top algorithm in FVC2000 finished the total
matching process in 1.22 sec.

Table 1. EER and average perturbation matching time.

Perturbation direction EER (%) Ave. matching
time (sec)

Perpendicular 8.32 0.015

All directions (R=15) 5.65 0.16

All directions (R=20) 5.57 0.28

All directions (R=25) 5.55 0.43

7. Discussion

The proposed perturbation method has two key fea-
tures. One is asynchronous perturbation of four local
windows around the core point. This realizes absorption
of non-linear distortion, in particular, shearing due to the
non-uniform pressure on the surface of a finger. The
other is pixel-wise perturbation in all directions that re-
alizes minute matching between input and enrolled
fingerprint images around the core point.

  (a) (b)   (c)

Figure 7. Example of perturbation matching. (a)
Original positions of four local windows. (b) Un-
successful perturbation in perpendicular direction
to ridge lines. (c) Successful perturbation in all 
directions.

 (a) (b)

Figure 8. Examples of unsuccessful perturbation
matching. (a) Genuine pair. (b) Impostor pair.

Figure 7 shows an example of successful perturbation 
matching in all directions against shearing, while pertur-
bation in perpendicular direction to ridge lines failed in 
optimal matching.

On the other hand, Figure 8 shows examples of un-
successful perturbation matching. The main causes of
failure are the following two: (1) failure in preliminary
matching due to a large amount of translation or rotation
between a genuine pair, and (2) coincidence between an
impostor pair due to a shortage of local windows.

8. Conclusion

Designing algorithms capable of extracting features
and matching them in poor quality fingerprint images are 
still very challenging although a number of fingerprint
verification systems are being used worldwide.

The proposed method was designed to realize
pixel-wise minute matching and absorb non-linear dis-
tortion by introducing asynchronous perturbation of four
local windows in all directions around the core point.

In experiments made on FVC2000 DB1 fingerprint
database, the proposed method achieved an EER of
5.55% comparable to those obtained in the competition.

Future work is to improve the ability of preliminary
matching against a large amount of linear distortion and
select a necessary and sufficient number of local win-
dows for enhanced perturbation. Also, a substantial
reduction of computational cost is indispensable in prac-
tical applications. 
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