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Abstract

Counting cells and following the evolution of the

biological layers are important applications in

microscopic imagery. In this paper, a microscopic image
segmentation method with two-dimensional (2D)

exponential entropy based on hybrid microcanonical

annealing is proposed. The 2D maximum exponential
entropy does not consider only the distribution of the

gray-level information but also takes advantage of the

spatial information using the 2D-histogram. The problem
with that method is its time-consuming computation that is

an obstacle in real time applications, for instance. We
propose to combine the microcanonical annealing with

the Nelder-Mead method, that was proved very efficient

for non convex and combinatorial optimization. As the
method is deterministic, the reproduction of the result is 

guaranteed, thus avoiding any randomization of the

solution. The experiments on segmenting microscopic
images proved that the proposed method can achieve a

satisfactory segmentation with a low computation cost. 

1. Introduction

Image segmentation is an important component in an
artificial visual system; it consists in extracting objects
from the background or separate different regions in an
image. The segmentation problem has received a great
deal of attention, thus any attempt to survey the literature
would require too much space. However, a presentation of
most segmentation methods may be found in [1-3].

The development of metaheuristic computing has been
flourishing during the last decade. Many metaheuristics
such as genetic algorithms [4], particle swarm
optimization [5-6], simulated annealing [7] and others [2]
have been applied to image segmentation problems.
However, in most of these works the reproducibility of the
solution was not studied. As the metaheuristic techniques
are probabilistic, the reproduction of the solution cannot
be guaranteed.

The initial motivation for applying microcanonical
annealing (MA) [8] came from our interest in removing
the stochastic character of the solution.
We also exploit the power of MA for searching in vast

combinatorial state spaces for optimal thresholds. MA has

some definite advantages over the canonical simulated

annealing [9-10], since it does not require the generation

of random numbers or the evaluation of transcendental

functions, thus allowing much faster implementations.
In this study, the development of the hybrid algorithm

aims at improving the performance of the segmentation

techniques in current practice. MA is hybridized with
Nelder-Mead (NM) simplex method [11] in order to
combine their advantages. NM method is very efficient for
local search but its convergence is very sensitive to the
starting point selected.

In this paper, we propose an automatic multilevel
thresholding technique involving the optimization of the
two-dimensional exponential entropy criterion based on 
hybrid microcanonical annealing for microscopic images.
We first propose to extend the exponential entropy defined
by Campbell [12] to the two-dimensional (2D) case and
then to the multilevel thresholding case. The thresholding
method based on the two-dimensional exponential entropy
takes advantage of the gray-level spatial information.
Afterwards, the 2D exponential entropy criterion is 
maximized through the hybrid NM-MA optimization
algorithm.

This paper is outlined as follows: in the next section the
computation of the two-dimensional histogram is
presented. In section 3 the extension of the exponential
entropy to the two-dimensional case is presented. In
section 4 the optimization method based on the
hybridization of the microcanonical annealing and the
proposed segmentation algorithm are described. The
results are discussed in section 5. Finally, we conclude in
the last section. 

2. Two-dimensional histogram 

The two-dimensional (2D) histogram [1] of a given
image is computed as follows: the average gray-level
value of the neighbourhood of each pixel is calculated. Let
g(x, y) be the averaged image f(x, y) using a window of
size 3x3.
In order to solve the frontier problem we disregard the top

and bottom rows and the left and right columns. Then the

2D histogram is constructed using expression (1).

Cardinal( ( , ) and ( , ) )
( , )

pixels number in the image

f x y i g x y j
hist i j   (1)

The joint probability is given by:

( , )ijp hist i j   (2)

where , 0,1,2, ,255i j .

The 2D histogram plane is represented in Fig.1: the first

and the second quadrant denote the background and the

objects respectively, the third and the fourth quadrant

contain information about noise and edges alone, they are

not considered. A threshold vector is (s, t), where s, for

g(x, y), represents the threshold of the average gray-level

of the pixel’s neighbourhood and t, for f(x, y), represents

the threshold of the gray-level of the pixel. The quadrants

containing background and objects (first and second) are
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considered to be independent probability distributions;

values in each case must be normalized in order to have a

total probability equal to 1. In the case of image

segmentation into N classes the a posteriori class

probabilities are given by:

1 1

1 1

1 1,
n n

n n

s t

m n n i

i s j t

P a a p j   (3)

1 1

1,
n n

n n

s t

m n n ij

i s j t

P a a p (4)

where ,n n na s t , n=2,…, N-1, m=2,..,N and N is 

classes number.

Figure 1: Two-dimensional histogram.

3. Two-dimensional exponential entropy 

criterion

We define the 2D exponential entropy by:
1/(1 )

ij

i j

H p   (5)

where and 1 .

Thus the exponential entropies associated with the

distributions of different image classes are defined below:

- The 2D entropy of the class m-1 can be computed

through:

1 1

1/(1 )
1 1

( 1)
1

1

,
,

n n

n n

s t
ijm

n n
m n ni s j t

p
H a a

P a a
 (6)

- The 2D entropy of the class m can be computed through:

1 1

1/(1 )
1 1

( )
1

1

,
,
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s t
ijm

n n
m n ni s j t

p
H a a

P a a

1

(7)

For the convenience of illustration, two vectors

 and 0 0, 1,s t , 255,255N Ns t  were added,

where t t  and 0 1 2 ... Nt t 0 1 2 ... Ns s s s .

Then the total entropy is:
1

( 1)
0 1

0

,..., ,

N
T i

N

i

i iH a a H a a

N

N

.... 255Ns s s

  (8)

According to the maximum entropy principle, the optimal

vectors  should meet:* * * * *
1,..., 1 1 1 1 1( ) ( , ),..., ( , )N Na s t s t

*
1,..., 1 1,..., 1max ( )T T

NH a H a   (9)

where: 1  and 1 2 1

1 2 11 .... 255Nt t t

In the case of one threshold (N=2) the computational
complexity for determining the optimal vector (s*, t*) is
O(L4). However, it is too time-consuming in the case of
multilevel thresholding. For the n-thresholding problem, it 
requires O(L2n+2). In this paper, we further present a 
microcanonical annealing algorithm for solving

1 1 2 2 1 1arg max ( , ), ( , ),..., ( , )T
N NH s t s t s t  efficiently. 

4. Hybrid microcanonical annealing 

4.1. Microcanonical annealing 

The microcanonical annealing is based on Creutz's
method [9] known as microcanonical Monte Carlo
simulation or the 'demon' algorithm. In its original form
the demon algorithm does not aim at generating low
energy states and hence is not directly useful for
optimization. Optimization problems can usually be
expressed in terms of a cost or energy function which is to 
be minimized over a space of possible solutions.
Microcanonical annealing based on Creutz's

microcanonical algorithm can be stated as: 

1. Choose an initial configuration S
2. Choose a demon energy D>0

3. Repeat: until stopping conditions

a. Choose a new configuration S'

b. Let ( ') ( )E E S E S

c. If E D accept the new configuration and update

the demon, i. e. ',S S D D E

d. Else reject the new configuration

e. If quasi-equilibrium is reached, reduce the demon

according to the schedule: .D D

Generation of a new configuration (step a) is performed
as in the Metropolis algorithm. Any new configuration
which would reduce the system energy is accepted. 
However, the energy lost by the system is given to an
artificial variable called a 'demon'. Increases in system
energy are only allowed if the demon can provide the
necessary energy, which is then lost.

The acceptance function is deterministic and 
computationally simple. It replaces an exponential and the 
generation of a random number with a comparison and a
subtraction. The sequence of states produced remains
stochastic, but derives its randomness from the generating
function. Here we anneal the demon value as Kirkpatrick
et al. [9] and others [10] have annealed the temperature in
simulated annealing.

4.2. Nelder-Mead method 

It is a classical powerful local descent algorithm making
no use of the objective function derivatives. A simplex is a 
geometrical figure consisting, in n-dimensions, of (n+1)
points x0,…,xn [8]. If any point of the simplex is taken as
the origin, the n other points define vector directions that
span the n-dimension vector space. If we randomly draw
as initial starting point x0, then the other points are
generated through the relation 0i j.x x e , where the ej

are n unit vectors, and  is a constant (typically equal to 
one).
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The simplex uses four elementary geometric
transformations: reflection, contraction, expansion and
multi-contraction. Through these operations the simplex
can improve itself and come closer to a local optimum
sequentially. The initial simplex moves, expands or
contracts. To select the appropriate transformation, the
method only uses the values of the function to be
optimized at the vertices of the simplex considered. After
each transformation, the current worst vertex is replaced
by a better one. Trial moves are generated according to 
the following basic operations (where x is the average
value of the vector components x1,…,xn and , ,  are 
constants):

1. Initialization,

1.1. Define the minimal percent p of accepted transitions in 

the first energy level.

1.2. Initialize D such that p% transformations tested can be 

accepted.

1.3. Generate a random acceptable solution and compute its

energy E.

1.4. Choose the maximal number of tests in each energy

level.

2. While the number of accepted solutions is non null.

2.1. Find a local solution (configuration) by using the

simplex method.

2.2. Repeat : until Nbmaxtest

2.2.1. Generate a new configuration (S') by

perturbing the obtained local configuration.

2.2.2. Compute the associated ( E).

2.2.3. If E D accept the new configuration and

update the demon, i. e. S S ', D D E

2.2.4. Compare the accepted configuration to the

best state found since the beginning and save 

it if it is better.

2.3. Reduce the demon according to the schedule: .D D

3. Show the best configuration.

reflection: 1(1 )r nx x x

expansion: (1 )e rx x x

contraction: 1 (1 )c nx x x

The algorithm starts by moving only the point of the

simplex, where the objective function is “high” and

another point image of the worst point is generated

(reflection operation). If the new point is better than all 

the others, the simplex is expanded in this direction,

otherwise, if it is at least better than the worst, the 

reflection is performed again with the new worst point.

The algorithm performs a contraction step when the worst

point is at least as good as the reflected point, in such a 

way that the simplex adapts itself to the function 

landscape and finally surrounds the optimum. If the worst

point is better than the contracted point, the multi-

contraction is performed. At each step, we check that the

generated point is not outside the allowed reduced

solution space.

4.3. Proposed segmentation algorithm

In this section, the proposed segmentation algorithm
based on the optimization of the two-dimensional
exponential entropy is presented. Figure 2 shows the
different steps of the algorithm. The method exploits the
hybrid microcanonical annealing to solve the 
segmentation problem expressed by (9). The hybridization
of the microcanonical annealing consists of using the
simplex method to find the local solution (thresholds).
The algorithm does not require any special initialization.
In order to get the contour of the regions, a contour
detection based on the gradient operator is performed.

5. Results and discussion

In this section, we discuss the experimental results
obtained using the proposed method. This discussion
includes the choice of the optimal thresholds and the
presentation of some microscopic images (bacteria, blood,
cells, and vessels). Here, are presented only the results in
the case of two classes’ segmentation.
Figure 3 shows the different original images used to

illustrate our method. In table 1 the values of the

parameters of NM-MA are summarized (these values

were empirically chosen).
In table 2 the size of the different image tests is specified
in term of the number of pixels. In order to quantify the
performance of the optimization algorithm we define the
speed gain ratio, that corresponds to the ratio of the

number of the possible solutions to the evaluation number
of the objective function.
Results have been compared with those provided by the
well known and robust Canny method (CM) [14]. The
values in bold correspond to the optimal thresholds
achieved through the NM-MA method.

Figure 2: Microcanonical annealing for maximizing 2D

exponential entropy.

In our first example, (figure 3(a)) the segmentation
result obtained through NM-MA is shown in figure 4(a)
and the result obtained via CM is shown in figure 5(a). By
comparing these two images one can remark that only
some of the bacteria were detected by CM, but NM-MA
method detected all the bacteria. The number of regions
corresponds to the number of bacteria, that is false in the 
case of CM. 

(a) (b)

(c) (d)

Figure 3. Original microscopic images.  (a) bacteria, (b) blood,

(c) cells, (d) vessel.

Table 1: Fitting of parameters of our algorithm.

Parameters Value

Nbmaxtest 1000

p, , 90%, 0.99, 0.5

, , 1, 0.5, 0.5
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(a) (b)

(c) (d)

6. Conclusion

In this paper, we proposed a new approach to find
optimal thresholds, based on hybrid microcanonical
optimization. In the first phase the two dimensional
histogram was constructed using spatial information, local
average gray value, to choose optimal thresholds. In the
second phase, a new extension of the one-dimensional
exponential entropy of degree  to the two-dimensional
case and its generalization to multilevel segmentation
were developed. In the third phase, microcanonical
annealing (MA) is introduced to remove the stochastic
feature of the solution. The algorithm convergence speed
is improved by hybridizing MA with NM.

It is clearly seen from the experimental results that the 
presented method based on hybrid microcanonical
optimization is more efficient than the classical Canny
method in the case of vessel microscopic images. This 
approach allows for good microscopic image segmentation
by using exponential two-dimensional entropy. It can also
be useful for gray-level image segmentation.

Figure 4. Segmentation results. (a) bacteria, (b) blood, (c) cells,

(d) vessel. 

Figure 3(b), figure 4(b) and figure 5(b) show the second
image test, the segmentation result obtained through NM-
MA and CM respectively. The result obtained via CM is 
inaccurate because of the double detection of each blood
cell: the cell and another surrounding region. This is due
to the gray-level variation around the cells. 
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