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Abstract

In this paper we address automated visual inspection of 

tablets that may, in contrast to manual tablet sorting, 
provide objective and reproducible tablet quality assur-

ance. Visual inspection of the ever–increasing numbers of 

the produced imprinted tablets, regulatory enforced for 
unambiguous identification of active ingredients and 

dosage strength of each tablet, is especially demanding. 

The problem becomes more tractable by incorporating 
some a priori knowledge of the imprint shape and/or ap-

pearance. For this purpose, we consider two alternatives, 

the so-called geometrical and statistical image analysis 
methods. The geometrical method, incorporating geomet-

rical a priori knowledge of the imprint shape, enables 

specific inspection of imprinted and non-imprinted tablet 
surface, while the statistical method exploits a priori 

knowledge of tablet surface appearance, derived from a 

training image database. The two methods were evaluated 
on a large tablet image database, consisting of 3445 im-

ages of four types of imprinted tablets, with and without 
typical production defects. A “gold standard” for testing 

the performances of the two inspection methods was es-

tablished by manually classifying the tablets. The results, 
obtained by ROC analysis, indicated that statistical 

method yields better defect detection sensitivity and 

specificity and is thus more suitable for automatic visual 
inspection of imprinted tablets. 

1. Introduction 

Nowadays, pharmaceutical companies produce a vast 
amount of different tablets worldwide. Tablet features, like 
shape, size, color, imprints, etc., must enable both profes-
sionals and consumers to unambiguously identify the
tablet and its dosage strength. This regulatory enforced 
requirement poses at least two challenging and inter-
winded problems to the pharmaceutical companies. First, 
the manufacturing processes must be updated or remod-
eled so as to produce tablets of different size, shape, color, 
texture, and/or imprints [1]. At the same time, the compa-
nies are also required to maintain or even improve the 
quality of the produced tablets, which is the second and 
contradicting problem, especially when producing tablets 
of complex shapes and/or imprints as these are far more 
difficult to produce. Consequently, various visual defects 
may emerge from the demanding manufacturing process, 
reducing the overall visual quality of the produced tablets. 
The problem is especially severe when affecting the visi-
bility and/or readability of tablet imprints. This may result 

in hazardous mix-ups among various types of tablets and 
thereby possibly endanger human life. In this respect, 
visual tablet inspection is of the utmost importance for 
assuring the required quality of different tablets.  

Visual quality inspection of tablets is nowadays often 
performed manually by various statistical sampling 
schemes. Such procedures only estimate, at a certain con-
fidence level, the overall quality of a given batch of tablets 
and can thus not assure the required quality of each tablet. 
To reach this goal, manual or automated visual inspection
of each tablet from all sides is required but since manual 
visual inspection is subjective, unreliable, tedious and 
even harmful to the operators, only automated visual in-
spection becomes feasible nowadays for assuring the
required quality of huge tablet batches. 

Automated visual quality inspection of tablets requires a 
sophisticated machine vision system, capable of fast tablet 
manipulation and illumination, image acquisition, and 
processing, estimation of tablet features/defects and cor-
responding classification and sorting. The key for reliable 
tablet inspection and sorting is efficient estimation of 
visual tablet features by means of automated tablet image 
analysis. Feature estimation is especially demanding when 
tablets with imprints are inspected as imprint areas may 
have significantly different visual properties than the rest 
of the tablet surface. The problem becomes more tractable, 
also for the various types of tablets, if some a priori 
knowledge of the imprint shape and/or appearance is in-
corporated into the tablet feature estimation step. In this 
case, imprinted and non-imprinted tablet surfaces can be 
analyzed differently and specifically for each tablet type. 

In this paper, we consider two alternative image analysis 
methods for tablet specific estimation of visual features of 
imprinted tablets, one incorporating a priori knowledge of 
the imprint shape, the other of the whole tablet surface 
appearance. The two methods were evaluated on a large 
image database of imprinted tablets, with and without 
typical production defects. The sensitivities and specifici-
ties for detecting various defects on imprinted tablets were 
assessed by the ROC analysis.  

2. Methods

In this section, the so-called geometrical and statistical 
image analysis methods are presented. The methods oper-
ate on tablet images and extract different visual features, 
estimating tablet surface quality. Features are derived from 
different column vector representations x of tablet image I,
which were in a form of image intensities i, absolute gra-
dients g and gradient components c=[cx

T,cy
T]T in x and in y

directions. 
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2.1. Geometrical method 

The geometrical method incorporates a priori knowl-
edge of the imprint shape in a geometrical form so that the 
imprint region can be analyzed separately, i.e. independ-
ently of the rest of the tablet surface. It is assumed that 
partitioning of the tablet surface into two non-overlapping 
constituent regions, each with specific visual properties, 
can increase the sensitivity and specificity of the extracted 
visual features/defects in both tablet regions.  

A priori knowledge of the imprint shape is obtained
from the imprint design, superimposed on the tablet image. 
The imprint is represented by a skeleton, defining local 
imprint direction and a binary imprint template of a se-
lected thickness. The so-called geometrical features are 
computed separately for the imprint and non-imprint re-
gions of the tablet surface. 

Two geometrical features are computed as maximal G1

and minimal G2 difference between the original i and fil-
tered i* image intensities in a given tablet region :

)(max *
1 iiG , )(min *

2 iiG  (1) 

Another two geometrical features are defined as maxi-
mal G3 absolute gradient g and maximal G4 filtered 
absolute gradient g*:

gmax3G , *max4 gG  (2) 

The last geometrical feature is derived from the com-
ponent gradient c in the imprint region as a maximal G5

scalar product between gradient component c and nor-
malized local imprint direction vector s, defined by the 
imprint skeleton: 

1
5 max pppG ssc  (3) 

where cp and sp represent the gradient component vector 
c and normalized local imprint direction vector s at each 
image point p(x,y):

T][ yxp ccc   and  T][ yxp sss   (4) 

2.2. Statistical method 

The statistical method exploits the statistical a priori 
knowledge of the entire tablet surface appearance, derived 
from a training image database. In this way, not only the 
imprint and non-imprint tablet regions but also each image 
element (pixel) is inherently analyzed distinctively and 
specifically for each tablet type. 

Principal component analysis [2, 3] is used to statisti-
cally model tablet surface appearance by a linear model:

Apxx  (5) 

A set of N aligned training images I1…IN are converted 
to column vector representations x1…xN and the corre-
sponding average column vector x  and covariance 
matrix  are computed: 

)))((( T
xxxxE  (6) 

Next, the eigenvalues and corresponding eigenvectors 
of the covariance matrix  are obtained by singular value 
decomposition [4]. The eigenvectors of the largest eigen-
values represent the most significant modes of variation of 
tablet surface appearance over a set of training images.

Tablet surface appearance can be thus approximated by 
only the first t most significant eigenvectors:  

ttpAxxx ~  (7) 

where x~  denotes an approximation of x, At the first t
eigenvectors of  and pt a vector of appearance approxi-
mation parameters, i.e. projections of )( xx  to the 
corresponding t eigenvectors. In this way, a compact sta-
tistical model, representing a priori knowledge of tablet 
surface appearance, can be obtained for any tablet image 
representation x. In our case, we have used image intensi-
ties i, absolute gradients g and gradient components c of 
the tablet images and derived the corresponding statistical 
models of their appearances. The obtained statistical 
models are used to derive various so-called statistical fea-
tures of tablet images aligned to the statistical models. 

The first statistical feature is derived as a maximal ab-
solute difference S1 between the tablet image intensity 
representation i and corresponding statistical model i

~
,

over the entire tablet surface domain :
~

max1 iiS  (8) 

Another statistical feature is obtained as the maximal 
absolute difference S2 between the tablet image gradient 
representation g and corresponding statistical model g~ ,
over the entire tablet surface domain :

~max2 ggS  (9) 

The last three statistical features are obtained by com-
paring gradient components c of the analyzed tablet 
images and corresponding statistical model c~ . The gra-
dient components are compared by a vector difference S3,
vector product S4, and normalized vector product S5:

ppS cc ~max3  (10) 

ppS cc ~max4  (11) 

1
5

~~max pppS ccc  (12) 

where cp and c~ p respectively denote the values of gradi-
ent component and corresponding statistical model at each 
image point p(x,y):

T][ yxp ccc   and  T]~~[~
yxp ccc   (13) 

3. Experiments and results 

In this section, the implementation details, the experi-
mental tablet image database with the “gold standard”, and 
the evaluation methodology are presented first. Next, the 
defect detection results obtained by the five geometrical 
and five statistical features are given. 

3.1. Implementation details 

Filtered image intensities i* and gradient components c
were obtained from the original intensities i using an uni-
form filter with 5x5 kernel, while a larger 20x20 kernel 
was used for filtering the absolute gradients g

*. The statis-
tical models of appearances of each tablet type were 
derived from 80 training images and approximated by the 
first three eigenvectors (t=3). 
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3.2. Image database with “gold standard” 

The experimental image database consisted of 3445 
images of four types of imprinted tablets taken from pro-
duction line in sets of 830, 1208, 821 and 586 tablets, with 
and without typical defects. A “gold standard” for visual 
inspection of defects was established by carefully manu-
ally classifying the tablets among the defective and 
non-defective ones. The tablets were classified into five 
defect categories, named: dot (D1), spot (D2), emboss (D3), 
deboss (D4) and crack (D5), as illustrated by the examples 
in Figure 1. 

     
D1 – Dot D2 – Spot D3 – Emboss D4 – Deboss D5 – Crack 

Figure 1. Tablets (top) with zoomed defects (bottom). 

3.3. Evaluation methodology 

The specificities and corresponding sensitivities of 
geometrical (G1–G5) and statistical (S1–S5) features for 
each defect category in each tablet set were obtained by the 
Receiver Operating Characteristics (ROC) analysis [5]. 
The ROC curve relates the tradeoffs between the true 
positive (TPR) and the corresponding false positive (FPR) 
defect detection rate of each feature. The TPR=TP/P is a 
ratio between the number of correctly detected tablets with 
defects (TP) and all defective (P) tablets, while the 
FPR=FP/N represents a ratio between the number of in-
correctly detected non-defective tablets (FP) and all 
non-defective (N) tablets. TPR is a measure of sensitivity, 

while 1-FPR is a measure of defect detection specificity. 
ROC curve is insensitive to the ratio between the number 
of defective and non-defective “gold standard” samples 
used for evaluation. 

For the sake of transparency, two additional evaluation 
criteria, TPRFPR and AUCFPR, were derived from the ROC 
curves of the geometrical and statistical features. The 
TPRFPR is the value of TPR at a given FPR and therefore 
represents the ratio of correctly detected tablets with de-
fects at a given ratio of the incorrectly detected tablets. On 
the other hand, the AUCFPR is the area under the ROC 
curve in an interval from 0 to a given FPR, normalized by 
the interval length. AUCFPR thus estimates the average 
defect detection performance over the practically accept-
able interval of the FPR for a given application.  

In our case, we have selected the acceptable FPR of 0.1 
and therefore computed the corresponding TPR0.1 and 
AUC0.1 from the ROC curves of all geometrical and sta-
tistical features and all defect categories. To assess both 
defect-specific and general defect detection performances 
of individual features, the features were separately evalu-
ated for the detection of individual defect categories. 

3.4. Results 

The results of the defect detection by the geometrical 
and statistical features are shown in Tables 1-3. Tables 1 
and 2 show the obtained values of TPR0.1 and AUC0.1 for 
all features and defect categories (D1–D5) of the first two 
tablet sets, while in Table 3 only the results for all defect 
categories (DALL) from the third and fourth tablet sets are 
given. In all three tables, the best TPR0.1 and AUC0.1 values 
are marked in bold so that the best features can easily be 
identified.

The obtained results indicate that the statistical feature 
S3 performs the best for the detection of defects in all four 
sets of tablets. Statistical features S2 and S5 also performed

Table 1. The TPR0.1 and AUC0.1 values for all features and all defects in the first set of 830 tablet images. 
Set 1 D1 D2 D3 D4 D5 DALL

Feature TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1

G1 0.38 0.32 0.57 0.45 0.55 0.53 0.33 0.24 0.75 0.57 0.41 0.30 
G2 0.70 0.55 0.61 0.55 0.62 0.52 0.37 0.24 0.55 0.44 0.47 0.34 
G3 0.83 0.73 0.83 0.72 0.58 0.54 0.51 0.44 1.00 0.87 0.63 0.56 
G4 0.90 0.84 1.00 0.98 0.64 0.57 0.73 0.68 1.00 1.00 0.80 0.74 
G5 0.52 0.50 0.44 0.42 0.59 0.53 0.85 0.83 0.05 0.03 0.61 0.59 
S1 0.94 0.82 0.88 0.74 1.00 0.92 1.00 0.85 0.95 0.78 0.96 0.82 
S2 1.00 0.91 1.00 0.95 1.00 0.96 1.00 0.92 1.00 0.99 1.00 0.92
S3 1.00 0.97 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.98 

S4 0.64 0.57 0.47 0.39 1.00 0.65 0.98 0.91 0.55 0.50 0.75 0.67 
S5 1.00 0.94 1.00 0.96 1.00 0.93 1.00 0.95 1.00 0.99 1.00 0.94

Table 2. The TPR0.1 and AUC0.1 values for all features and all defects in the second set of 1208 tablet images.
Set 2 D1 D2 D3 D4 D5 DALL

Feature TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1 TPR0.1 AUC0.1

G1 0.44 0.30 0.60 0.54 0.65 0.53 0.53 0.45 1.00 1.00 0.40 0.29 
G2 0.53 0.39 0.58 0.43 1.00 0.73 0.44 0.29 1.00 1.00 0.46 0.32 
G3 0.69 0.56 0.89 0.73 1.00 0.88 0.66 0.50 1.00 1.00 0.64 0.51 
G4 0.64 0.47 0.91 0.89 1.00 1.00 0.79 0.71 1.00 1.00 0.66 0.53 
G5 0.37 0.29 0.60 0.58 1.00 1.00 0.74 0.71 1.00 1.00 0.45 0.40 
S1 0.74 0.65 0.91 0.86 1.00 0.97 0.91 0.85 1.00 1.00 0.77 0.68 
S2 0.87 0.75 0.95 0.91 1.00 1.00 1.00 0.90 1.00 1.00 0.91 0.78
S3 0.85 0.76 0.95 0.91 1.00 1.00 1.00 0.98 1.00 1.00 0.90 0.82

S4 0.38 0.24 0.58 0.46 1.00 0.99 0.75 0.52 1.00 1.00 0.49 0.32 
S5 0.84 0.76 0.94 0.91 1.00 1.00 1.00 0.93 1.00 1.00 0.88 0.80 
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Table 3. The TPR0.1 and AUC0.1 values for 
all features in the third and fourth set of 821 
and 586 tablet images, respectively. 

 Set 3 - DALL Set 4 - DALL

Feature TPR0.1 AUC0.1 TPR0.1 AUC0.1

G1 0.40 0.22 0.23 0.16 
G2 0.04 0.02 0.25 0.12 
G3 0.45 0.23 0.59 0.42 
G4 0.94 0.78 0.41 0.36 
G5 0.36 0.32 0.27 0.20 
S1 0.83 0.66 0.74 0.46 
S2 0.92 0.77 0.91 0.78
S3 0.93 0.83 0.90 0.80

S4 0.48 0.34 0.26 0.23 
S5 0.96 0.81 0.85 0.77 

well on all sets of tablets. On the other hand, geometrical 
features yielded much lower true positive detection rates 
on all defects, with an exception of feature G4. However, a 
comparison of the best geometrical G4 to the best statistical 
feature S3, given also by the ROC curves for the first tablet
set in Figure 2, indicate that the statistical feature S3 per-
forms much better. Moreover, in the first tablet set, the best 
geometrical feature yielded a TPR0.1 value of 0.80, while 
three statistical features performed perfectly with the 
TPR0.1 values of 1. In the second set of images, the best
TPR0.1 values of 0.66 and 0.91 were obtained by the best 
geometrical and best statistical features, respectively. In 
sets three and four, the best geometrical TPR0.1 values were 
0.94 and 0.59, while the best statistical features yielded 
TPR0.1 values of 0.96 and 0.91, respectively.  
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Figure 2. ROC curves of geometrical G4 (thin) and statis-
tical feature S3 (thick) for the first tablet set. 

4. Discussion and conclusion 

Two alternative image analysis methods, based on 
geometrical and statistical a priori knowledge, were in-
troduced and compared for visual inspection of typical 
production defects on imprinted tablets. The methods were 
tested on a large representative image database of four 
types of tablets. The obtained results demonstrated that 
both methods perform adequately, while the statistical 
method yielded better sensitivity and specificity on all 
types of tablets and defects. In both methods, the features 
based on image gradients outperformed the features based 
on image intensities. Altogether, the statistical features 
based on component gradients performed the best, which 
was to be expected since component gradients are gener-

ally more descriptive than absolute gradients or intensities. 
Other important practical issues are the reliability of the 

inspection phase and simplicity of the training phase, 
which is required by both methods before inspecting a new 
type of products. Namely, the geometrical method requires 
a construction of a skeleton and corresponding binary 
model of an imprint, which can be obtained automatically 
from the tablet design or manually on a selected tablet 
image. On the other hand, the statistical method requires 
construction of statistical models of appearances that can 
be derived automatically from the aligned training images 
of each new tablet type. Therefore, considering the training 
phase, the statistical method seems more automated and 
thereby also more practical but requires reliable rigid reg-
istration of tablet images. Image registration also plays an 
important role in the inspection phase of both methods. 
Namely, the geometrical and statistical methods require 
automatic rigid registration of the inspected tablet image to 
the corresponding geometrical and statistical models, re-
spectively. Nevertheless, rigid registration is a well 
established image analysis field [6].      

The high specificity (low FPR) of the visual quality 
inspection has huge practical and economical benefits as 
less non-defective products are detected as defective and 
thereby mistakenly discarded. On the other hand, the in-
creased sensitivity (high TPR) is of the utmost importance 
for the final quality of a given tablet batch. In terms of 
specificity and sensitivity, statistical method and especially 
component gradient features seem feasible for visual 
quality inspection of different types of tablets. Neverthe-
less, the presented image analysis methods are quite 
general and promising tools for automated visual inspec-
tion of not only tablets but also capsules or other solid oral 
dosage forms.  
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