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Abstract

This paper proposes a method for sign language recog-

nition that bypasses the need for tracking by classifying the

motion directly. The method uses the natural extension of

haar like features into the temporal domain, computed ef-

ficiently using an integral volume. These volumetric fea-

tures are assembled into spatio-temporal classifiers using

boosting. Results are presented for a fast feature extraction

method and 2 different types of boosting. These configura-

tions have been tested on a data set consisting of both seen

and unseen signers performing 5 signs producing competi-

tive results.

1 Introduction

The objective of this research is to produce a signer inde-

pendent, environment invariant method of recognising mo-

tion. While the specific interests of this research lie in sign

recognition the objectives are equally applicable to gesture.

Sign Language (SL), being as complex as any spoken lan-

guage, has many thousands of signs each differing from the

next by minor changes in hand motion, shape or position.

It’s grammar includes the modification of signs to indicate

an adverb modifying a verb and the concept of placement

where objects or people are given a spatial position and then

referred to later. The inter-signer differences are large, not

just between different ’accents’ and colloquialisms but also

between new and old signers. The more fluent a signer, the

faster and smaller they sign and the more co-articulation ef-

fects (where the end of one sign merges into the beginning

of the next therefore blurring the boundary) become appar-

ent. This, coupled with the complexities of sign grammar

make true Sign Language Recognition (SLR) an intricate

challenge.

This paper investigates a method of motion classification

which identifies both the type of motion and its relative po-

sition to the signer in one step, eliminating the need for

separate tracking and classification. The concepts of the in-

tegral volume, the features associated with it and boosting

as a method for training the required classifiers are detailed.

Then specifics of the implementation regarding numerical

precision over long sequences and tractable memory re-

quirements are discussed and a novel solution introduced.

Finally the results of the experiments are presented.

2 Background

Many of the solutions to SLR that have been proposed

use data gloves to acquire a definite position and trajectory

of the hands [1] which are cumbersome to the user. The

majority of current research focuses on tracking based so-

lutions such as Staner and Pentland [2] who used colour to

segment the hands for ease of tracking. More recently the

focus has shifted to looking at sign language specifics as a

way to aid classification. Vogler and Metaxas [3] used par-

allel HMMs on both hand shape and motion while Kadir et

al [4] take this further by combining head, hand and torso

position as well as hand shape to create a system that can be

trained on five or fewer examples. Recently, non-tracking

based research has begun to emerge, Zahedi et al [5] apply

skin segmentation combined with 5 types of differencing to

each frame in a sequence which are then down sampled to

get features whereas Wong and Cippola [6] use PCA on mo-

tion gradient images of a sequence to obtain their features.

Figure 1: Example of signing motion over time.

3 Methodology

If a video stream of someone waving is examined and

the footage processed using a frame differencing algorithm

it can be seen how the hands move through time, this is

shown in figure 1. As can be seen, there is a definite shape

to the motion. By stacking each frame together as a vol-

ume, a sign or gesture can be thought of as a trajectory or

subspace within this larger volume. By learning the shape

and position of this subspace relative to the signer, a mo-

tion detector can be constructed. This approach approxi-

mates the subspace using a linear combination of simple

block features learnt through boosting. In the remainder

of this section we first discuss the boosting algorithms in-

vestigated before moving on to the concepts of the integral

volume and how it can be used in SLR. Then some of the

implementation issues that arise when considering the Inte-

gral Volume as a usable real time solution are discussed.

3.1 Boosting

Boosting provides a way of building a strong classifier

that performs well through a simple selection process. An

iterative algorithm, boosting first selects the best weak clas-

sifier from a set compiled of all available features (each

with an optimum response threshold). It then applies a

weighting to each training example. Reducing the weight-
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ing of examples classified in the last pass and increasing

the weighting of those not classified boosts the importance

of examples which prove challenging to classify, encour-

aging the next iteration to concentrate more on the chal-

lenging examples with the heaviest weightings. Two dif-

ferent boosting algorithms are detailed, AdaBoost [7]and

AdaPlusBoost which is a novel hybrid of Ada boost and

RealBoost [8]. RealBoost differs from AdaBoost in two

distinct ways, firstly the weak classifiers no longer return

a binary classification but instead return a likelihood ratio

based on the training examples and secondly, the selection

of weak classifiers is not based on their performance in iso-

lation but on the performance of the strong classifier that

would be created were they to be added to the current solu-

tion. While RealBoost offers advantages in reduced classi-

fier sizes with fewer redundant weak classifiers, it requires

a more complete data set than AdaBoost in order to build

up probability distributions represented as histograms. This

can be partially overcome using Parzan windowing, how-

ever, this is only a solution for a near complete data set.

AdaPlusBoost was devised to combine some of the advan-

tages offered by RealBoost with AdaBoost’s robust attitude

to a sparse training set. It uses the same weak classifiers as

AdaBoost but takes from RealBoost the idea that the best

weak classifier to choose is the best in combination rather

than the best in isolation. This results in a more optimum

strong classifier which can be trained on relatively small

data sets as will be seen.

3.2 Integral Volumes and Volumetric Features

The integral image was introduced to the image process-

ing community by Viola and Jones [7]. Similar to summed

area tables in texture mapping [9], it gives a fast way to

calculate block features in an image. This is done by creat-

ing an intermediate image where any point (x,y) contains a

value equal to the sum of all the pixels to the upper left of

itself. Using this integral image one only needs to perform

an addition and two subtractions to get the summation of

any block area in the image.

To extend these block features into the temporal domain and

allow for the efficient computation of volumetric features

an integral volume was used [10] [11]. If the frames of a

video are stacked one behind the other in temporal order, to

create a volume, any point in the integral volume (IV ) will

contain the sum of all points to its upper left plus those be-

fore it. This is shown in figure 2 and by equation 1. Where

V is the volume or video to be converted and (x, y, z) &

(x′, y′, z′) are points referenced to the top front left corner

(0, 0, 0).

IV (x′, y′, z′) =

x′

∑

x=0

y′

∑

y=0

z′

∑

z=0

V (x, y, z) (1)

To calculate a volumetric summation, four subtractions

and three additions are required, again regardless of the

block size. The features used are compiled of 2 volumetric

blocks, whose parameters are selected relative to the sign-

ers face position and scale which allows a smaller feature

set to be used. This was done by finding the signer’s face in

the image and then restricting the spatial search for motion

Figure 2: The value of the integral volume point

(x,y,z) is the sum of all the points in the current and

previous frames to the upper left of itself.

to an area around it. Furthermore if the size of the signer

can be determined then a likely scale for the motion can be

approximated. To this end the Viola Jones [7] face detector

available in the OpenCV library [12] was used to find the

face of the signer. From this, a position and relative size of

the signer was determined.

The features themselves are based on the original block fea-

tures used by Viola and Jones [7]. They have been extended

into the temporal domain as shown in figure 3. Each fea-

ture returns a value which is the the difference between the

values of the two volumes.

Figure 3: Some of the features used for the

weak classifiers. A weak classifier gives a re-

sponse (Rx) by subtracting the volumetric sum

of the solid area((xs, ys, zs)(x
′

s, y
′

s, z
′

s)) from that

of the translucent area((xt, yt, zt)(x
′

t, y
′

t, z
′

t) −
(xs, ys, zs)(x

′

s, y
′

s, z
′

s)) and applying the optimally

chosen threshold Twc. Where (x, y, z) refers to the

top left point of a sub-volume and (x′, y′, z′) the bot-

tom right point. See equation 2

Vs =

x′

s
∑

i=xs

y′

s
∑

j=ys

z′

s
∑

k=zs

V (i, j, k)

Vt =

x′

t
∑

i=xt

y′

t
∑

j=yt

z′

t
∑

k=zt

V (i, j, k)

Rx =

{

1 if (Vt − 2Vs) ≥ Twc

0 if (Vt − 2Vs) < Twc

}

(2)

3.2.1 Image Buffer

One of the main implementation issues with the integral

volume is maintaining numerical precision over long se-

quences, this is not an issue when working with short iso-

lated sequences of signs but a serious consideration when

considering a real-time detection application. This prob-

lem has been overcome using a double image buffer system

that updates two image buffers simultaneously. While one

buffer is being restarted the other is used to perform the cal-

culations. A pictorial representation is shown in figure 4,
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as can be seen the buffers are offset by half their size, this

should be at least the same as the maximum size of the clas-

sifiers used. This can be done since the integral space time

is relative and does not need to be continuous over all of the

image stream but only over the length of the classifier.

Figure 4: The dual image buffers work out of step

with each other, when the first is half full the second

starts filling from zero, when the first buffer is full

the window switches into the second buffer and the

first buffer is restarted. This way, at any frame there

is always a full window of history yet the total value

of any point is limited.

3.2.2 Pre-Computed Values

When training a system that requires many video clips it is

inevitable that there will be computational considerations.

Consider a sign video clip of 320 by 240 pixels and aver-

age length 50 frames, to store the full version would re-

quire a minimum space of 230.55Kb and recomputing the

integral volume each time it was used. To store the inte-

gral video would require a minimum of 614.8Kb (assum-

ing a 64bit integer is used per pixel) with a reduced com-

plexity of only needing to compute the volumetric differ-

ences in each iteration. Alternatively, to store the response

for each feature/example combination would only require

around 400kb per example (assuming 50,000 features) and

computation is reduced to one look-up each time a feature is

tested. In the case of this research the dominating factor was

speed, with a feature set of over a million candidate weak

classifiers to choose from and using pre-computed values

the system trains an average classifier in around 2 hours on

a parallel implementation across 96 processors.

3.3 Feature Extraction

Frame differencing was used to extract features for the

integral volume by subtracting pixel colour intensities be-

tween consecutive frames to show temporal change. Be-

fore being subjected to a morphological opening to re-

move noise the resultant differenced frame was converted

to greyscale. Two options were then investigated, creating

an integral volume from this greyscale difference image or

applying a threshold to the frame to produce a binary image

which could then be used in the integral volume. The pro-

cessed volume (Vp) which comes from the original video

volume (Vo) and is converted into the Integral Volume (IV )

is given by the equation shown in 3. If a threshold (T ) is

applied, then the processed volume becomes as shown in

equation 4

Vp(x, y, z) = |Vo(x, y, z) − Vo(x, y, z − 1)| (3)

Vp(x, y, z) =

{

1 if |Vo(x, y, z) − Vo(x, y, z − 1)| ≥ T

0 if |Vo(x, y, z) − Vo(x, y, z − 1)| < T

}

(4)

Through experimental verification it can be shown that T

should be kept low (around 10) so as to remove false motion

(such as signal noise or compression artefacts) whilst still

capturing all the actual motion.

4 Experimental results

4.1 Data Set

The training set consists of 5 repetitions of 5 differ-

ent signs performed by 9 different people, it has a non-

consistent cluttered background and was taken using a stan-

dard web cam. The test set was taken under similar condi-

tions and consists of the same 5 signs repeated 5 times by

12 people, 3 of whom are not present in the training set

(allowing testing on unseen data containing different sub-

jects). The five signs in the set are the signs for ’sign’, ’lan-

guage’, ’cat’, ’hello’ and ’friend’. The 12 people in the set

were a mix of signers and non-signers and therefore con-

tains considerable variation in signing across subjects.

4.2 Results

The system was trained and tested in the 4 different con-

figurations, AdaBoost or AdaPlusBoost and T = 10 or no

T . Fig 5 shows the first 20 weak classifiers chosen by

the AdaBoost learning algorithm with T = 10 when clas-

sifying the sign for (a) ’hello’ (a wave), and the sign for

(b)’friend’(shaking hands). The face reference box is also

shown, from this measurement all the classifier position and

scales are calculated. The darker the classifier the earlier

the weak classifier was chosen in the boosting algorithm.

It can be seen that in (a) the initial classifiers are clustered

around the moving arm and the side of the body where mo-

tion would be expected during a wave and for (b) the classi-

fiers are concentrated around where the hands are shaking.

ROCs for the tested configurations are shown in figure 6 and

figure 7. The system was tested on two unseen test sets, the

first containing just the known signers present in the train-

ing set and the second consisting of both the known and the

unknown signers.

Figure 5: The first 20 classifiers chosen by the Ad-

aBoost learning algorithm using T = 10 for the sign

(a)’Hello’ which is a wave and (b)’Friend’ which is

shaking hands with yourself.

5 Discussions

5.1 Boosting Algorithms

Comparing the two algorithms tested, AdaBoost and

AdaPlusBoost, it can be seen that they both achieve sim-
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Figure 6: ROC Curves showing performance on

known signers for the sign Hello

Figure 7: ROC Curves showing performance on a

mixture of known and unknown signers for the sign

Hello

ilar recognition rates. It should be noted, however, that

AdaPlusBoost uses far fewer classifiers (often a factor of

ten fewer than AdaBoost) to produce similar results. This

means that the system would be much more suited to real-

time applications if using the AdaPlusBoost classifiers, for

while they take longer to train (due to re-calculating the

strong classifier each iteration) they reduce the per frame

time required for detection.

5.2 Feature Extraction Threshold

When working on purely known signers (those who ap-

peared in the training data) little difference is made by using

a threshold after the feature extraction stage. The advan-

tages of the threshold are only fully noticeable when the

system is tested on a mixture of both known and unknown

signers. On this type of data the threshold reduces the dis-

parity between different signers’ skin colours and clothing

colours making the system more robust to unseen signers.

6 Conclusion

In this paper a system has been discussed that can distin-

guish between various signs performed by any signer. Us-

ing the classifiers produced by AdaPlusBoost the system

could be made to detect signs in a real-time situation. With

the application of a threshold after the feature extraction

phase there is no need for a new signer to re-train the clas-

sifiers. Together these points produce a signer-invariant and

robust solution to recognise a selection of signs or gestures.

7 Future work

To extend this work a hand shape detector could be

added to increase sign classification for signs which have

similar motions. Also to reduce complexity, as the sign

database increases it would be logical to work on the com-

ponent parts of signs, the visemes, comparable to phonemes

in speech.
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