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Abstract

This paper presents uncertainty propagation in
landmark based position estimation methods. Anal-
ysis of two methods has been carried out where robot
position is estimated by detecting one or two globally
distinct features using a pivoted stereo vision system.
We make a basic assumption about error in estimat-
ing point features in camera images and propagate it
into robot position estimate using first order approx-
imation of non-linear functions. Simulation results
illustrate the performance of the method.

1 Introduction

Robot pose maintenance is a basic requirement
of autonomous navigation. To estimate its pose a
robot normally relies on its sensors to gather infor-
mation about distinctive features in its environment.
Error free measurements will result in perfect local-
ization. However, measurements are never perfect
which result in an uncertain robot position estimate.
Apart from measurement errors there could be er-
ror in feature identification and matching with the
world map. Therefore, in addition to knowing po-
sition of the robot it is also important to measure
reliability of this estimate.

Matthies and Shafer [1] use a stereo vision sys-
tem to estimate translation and rotation between
two 3D sets of points. The robot position is esti-
mated as a succession of each transformation be-
tween frames. Similarly, Kriegman et al. [2] use a
stereo vision system for robot navigation in indoor
environments. Robot position is tracked, based on
information gathered as features move between each
successive motion of the robot. Robot position un-
certainty is calculated using first order approxima-
tion.

∗Supported by Higher Education Commission, Pakistan.

Fuzzy logic based methods can be used to account
for error in odometry and external sensors and to
represent uncertainty in robot location. Buschka et
al. [3] adopt this technique for localization of Sony
Aibo robots using lines and color marking in the en-
vironment, whereas, Herrero-Perez et al. [4] use cor-
ner formed by field lines. Similarly, fuzzy temporal
rules have been applied to detect doors in ultrasonic
data [5] and Demirli and Türksen [6] use fuzzy sets
to model sonar data and estimate robot position by
using fuzzy triangulation.

There are approaches that represent observation
error as tolerances. Atiya and Hager [7] use a geo-
metric tolerance to express observation uncertainty.
They use stereo vision based extraction of vertical
edges in the environment for localization. Similarly,
Boley et al. [8] propose an alternate solution to ex-
tended Kalman filter. They use recursive total least
squares algorithm to obtain estimate of the robot
position.

In this work, robot observation is based on identi-
fication of globally distinct landmarks in robot coor-
dinates system using binocular stereo vision system.
The robot position is then calculated using land-
mark location in robot and world coordinate system
as input. We assume that the non-linear models
can be adequately represented by the first two com-
ponents of the Taylor series expansion around the
estimated observation. However, as noted by Krieg-
man et al. [2], the linearization of the perspective
transformation do not hold for distant point corre-
spondence as the disparity decreases and higher or-
der terms will dominate. We are mainly interested
in analyzing location uncertainty that arises from
sensor imperfections. We assume that error in land-
mark location in the global map and correspondence
analysis can be ignored. Our work differs from ear-
lier works in a way that we assume that the random
error in pixels location in each image of the stereo
pair is Gaussian and then propagate it to position
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estimation of the robot. The balance of the paper is
structured as follows: Section 2 reviews two meth-
ods of position estimation and presents uncertainty
analysis. Experimental results are presented in Sec-
tion 3. The paper is concluded in Section 4

2 Uncertainty analysis

We assume that the robot’s motion is two dimen-
sional where pose of the robot has 3 degrees of free-

dom i.e. p =
[
x y θ

]T
. The global coordinate

system is represented by x and y axis, the robot
coordinate system by X and Y axis and the image
coordinate system by u and v axis. The u and v
axes of the image plane are in opposite direction of
Y and Z axes respectively. Assuming identical cam-
eras, parallel image planes and aligned epipolar lines

a point P =
[
X Y Z

]T
in robot coordinate sys-

tem can be related to its projections pil =
[
ul vl

]T

and pir =
[
ur vr

]T
in the left and right images un-

der perspective transformation as follows [9]:

P =




X
Y
Z


 = f(pil,pir) =




xc + fb
ul−ur−b

2
ul+ur−2ou

ul−ur

−b(vr−ov)
ul−ur


 (1)

where [ou ov]T is the image center, b is the baseline
of the stereo vision system, f focal length of both
cameras and xc is the distance from the center of
the robot to the cameras.

2.1 Single landmark based localization

Robot position p =
[
x y

]T
can be calculated

using observation X and Y with respect to landmark

pl =
[
xl yl

]T
and absolute orientation θ as given

by (2) [9]:

p =

[
x
y

]
= g(




ul

ur

θ


) =

[
xl − rc
yl − rs

]
(2)

where s = sin(atan2( Y/X) + θ), r =
√

X2 + Y 2 and
c = cos(atan2( Y/X) + θ).

The imperfection of the input quantities result in
an uncertain position estimate as shown in Fig. 1.
We assume that error in input vector is zero mean
Gaussian with the following covariance:

Σi =




σ2
uu 0 0
0 σ2

uu 0
0 0 σ2

θθ


 (3)

where σ2
uu is the variance of ul or ur and σ2

θθ is
the variance of robot absolute orientation. All three
components of the input vector are not correlated to

Figure 1: Error in landmark location and robot ori-
entation results in an uncertain pose estimation

each other. Additionally, due to the identical cam-
era assumption the error distribution of ul and ur

are supposed to be identical. This error is propa-
gated into position estimate by the transformation
(2). The system given by (2) is nonlinear and the
resulting error distribution will not be a Gaussian.
However, we assume that it can be adequately rep-
resented by the first two terms of Taylor series ex-
pansion around estimated input, î. We proceed as
follows:

p = g(̂i) + Jĩi + . . . (4)

where p̂ = g(̂i) is the position estimate, p̃ ≈ Jĩi its
error and Ji is the jacobian of p with respect to i

evaluated at its estimated value î. Ji is having the
following elements

∂x/∂ul
= 1/rd2 [uro(bsX − cbY ) + fb(sY + cX)]

∂x/∂ur
= −1/rd2 [ulo(bsX − cbY ) + fb(sY + cX)]

∂x/∂θ = rs
∂y/∂ul

= −1/rd2 [uro(bcX + sbY ) + fb(cY − sX)]
∂y/∂ur

= 1/rd2 [ulo(bcX + sbY ) + fb(cY − sX)]
∂y/∂θ = −rc

where d = ul − ur, uro = ur − ou and ulo = ul −
ou. From (4) we derive expression for the covariance
matrix of position estimate as follows:

Σp = E{p̃p̃T } = JiΣiJ
T
i

2.2 Location estimation using two land-
marks

When the robot orientation estimate is not reli-
able or not available it needs to estimate location
of two globally known landmarks in its coordinate
system [10]. With this information robot location
is constrained to the intersection of two circles as
shown in Fig. 2 and given by the following expres-
sion:

p =




x
y
θ


 =




(−D±
√

D2−4CE)/2C

A + B (−D±
√

D2−4CE)/2C

atan2( yl1−y/xl1−x) − atan2( Y 1/X1)




(5)
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Figure 2: Range estimation error with respect to
landmarks constrains the robot location to shaded
area instead single point of intersection of the circle

where A =
r2

1
−r2

2
+x2

l2
−x2

l1
+y2

l2
−y2

l1

2a
, B = xl1−xl2

a
,

C = B2 + 1, D = 2AB − 2yl1B − 2xl1, E =
A2 + x2

l1 + y2
l1 − 2yl1A − r2

1 and r1 =
√

X12 + Y 12,
r2 =

√
X22 + Y 22, a = yl2 − yl1. The subscripts 1

and 2 differentiate between quantities related to the
two landmarks.

The input vector i =
[
ul1 ur1 ul2 ur2

]T
has

four components which correspond to the location of
the two landmarks in the camera images. The im-
perfection in its estimation is propagated into robot
location using (5) which result in an uncertain posi-
tion estimate as illustrated in Fig. 2. We model this
imperfection with a zero mean Gaussian having the
following covariance matrix:

Σi = σ2
uuI4×4 (6)

where I4×4 is 4× 4 identity matrix. Using the same
principles as adapted in the previous section we ar-
rive at the following expression for the covariance
matrix of position estimate using the new method:

Σp = JiΣiJ
T
i (7)

3 Experimental results

We investigate the performance of our algorithm
in simulation. In total 25 trials each consisting of
100 steps were conducted. These trials are further
grouped into four categories. First the single land-
mark method was tested and then the experiment
was repeated using two landmarks. At every step
the robot calculates it position and its uncertainty
if it finds the minimum required features.

Experimental results of single landmark based po-
sition estimation are shown in Fig. 3. The first cat-
egory consisting of four trials is shown in Fig. 3(a).
Here the robot follows rectangular paths of differ-
ent dimensions with its orientation fixed at 0 ◦ or
180 ◦. To compare position deviation with its corre-
sponding ±σ error bound all measurements in each
category are stacked together and shown next to it.
For example Fig. 3(b) shows error in all position
estimates of Fig. 3(a). Resulting error in robot posi-
tion is shown by black bars while the red curve give

the ±σ uncertainty bound. We see from Fig. 3(b),
3(d), 3(f) and 3(h) that the error is well bounded.
Fig. 3(c) illustrates a rotation only scenario. Be-
tween each consecutive steps there is only a small
change in robot orientation whereas its position re-
mains fixed. Motion along rectangular paths of dif-
ferent dimension and rotation of 360 ◦in each trial is
shown in Fig. 3(e). This category consists of 5 trials.
Fig. 3(g) illustrate the last category consisting of 6
trials. Here the robot is following linear paths with
its orientation fixed along the x-axis.

(a) (b) ±σ bound for (a)

(c) (d) ±σ bound for (c)

(e) (f) ±σ bound for (e)

(g) (h) ±σ bound for (g)

Figure 3: Single landmark position estimation.
Robot orientation noise is additive zero mean and
12.25 ◦variance (a) motion along rectangular paths
with no rotation (c) fixed point rotation (e) motion
and rotation (g) linear motion with no rotation

Results for the second method are shown in Fig. 4.
True positions are marked with a (+), while cal-
culated positions are marked with a (·). The line
segments show the difference between the calcu-
lated and true position. The small circles on the
left and right sides indicate the four points used
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as landmarks in this study. In all of these experi-
ments image resolution and stereo baseline was set
at 320 × 240 pixels and 3cm respectively. The ex-
periment was conducted with σ2

uu and σ2
θθ values of

0.9 and pi/20 respectively.

(a) Motion only (b) ±σ bound for (a)

(c) Fixed point rotation (d) ±σ bound for (c)

(e) Motion and rotation (f) ±σ bound for (e)

(g) Linear motion with no
rotation

(h) ±σ bound for (g)

Figure 4: Robot pose is estimated at fewer locations
as compared to the first method due to the difficulty
of simultaneous acquisition of two landmarks

As can be seen from Fig. 3 and Fig. 4 that due to
high range error robot location error is high when it
is estimated with respect to distant feature points.
This is due to the fact that we use a narrow baseline
stereo and low resolution images. Furthermore, the
appearance of the landmark features varies with the
view point. This raise in location error with distance
from landmark features is properly captured by a
corresponding increase in uncertainty.

4 Conclusion

In this paper we presented uncertainty analysis
using first order error approximation of explicit func-

tions. Simulation results show that the method can
adequately represent uncertainty that arise from im-
age quantization error. However, the method fails
to handle gross segmentation errors and mismatches
of landmarks. Global position estimate and its co-
variance matrix is required to initialize extended
Kalman filter for tracking robot position. Future
work include completion of the real-world tests and
incorporating these results in an extended Kalman
filter for robot position tracking.
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