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Abstract

This papaer proposes a method of estimating the state
of a driving lane by using a multiple-model particle filter
for switching the type of multiple-lane model. This model
represents whether there is a lane to the left or right of the
running lane or there are lanes on both sides of the run-
ning lane. Using the context that an image is captured
by car-mounted camera, we simplified the lane detection
problem to reduce the lane state estimates. Assuming that
the lane boundaries are straight lines, we can represent the
lane model as a one-dimensional parameter space.

1 Introduction

Traffic informationization is hoped to enable automatic
driving and safe driving supports for cars. Some studies
have developed means of recognizing the situation outside
the car from dynamic scenes captured with a car-mounted
camera. Lane detection, the process of locating lanes in
an image captured with a camera on a vehicle is a basic
process for recognizing traffic conditions or the state of a
vehicle relative to the lanes. Many lane detection methods
have been proposed [5, 1, 6, 4, 3, 8, 2]. There are two basic
approaches to detect lanes: region based and edge based.
In the edge based method, lane detection is done by fitting
lines to edges or lane markers calculated from an image. Li
et al. [5] used a quadratic function to detect curved lanes.
If the model is complex, the computation time is involved
and the lanes may not be detected consistently. In many
cases, the shape of lane boundaries is a straight line in the
near field of the front or rear of the vehicle. Park et al. [6]
proposed a lane curve detection method such that the first
near field lane has to be detected as a straight line.

Many lane detection methods simplify the lane detection
problem by using the context that an image is captured by a
car-mounted camera. Concretely for example, one method
uses the restrictions that road is a plane and the projection
from the road plane to the image plane does not change [5].
Moreover, Apostoloff [1] applied a particle filter to a lane
tracking framework integrating multiple cues, colors, edges
etc. By using the tracking framework, the search region of
the lane parameters is restricted to a region predicted by the
history of the past estimates.

For further simplicity, in assumptions stated above, we
assume that the lane direction on a road plane is parallel to

the car’s running direction. Furthermore, we handle mul-
tiple lanes with a multiple lane model, unlike the conven-
tional methods that handle only the running lane or detect
each lane boundary individually. For tracking, we adopted
a multiple-model particle filter. To describe multiple lanes,
the most plausible model among a set of models is selected
in each frame by estimating the model parameters, lane po-
sition, and width. This method assumes that the shape of
the road is a plane and the lane boundary is almost a straight
line in an image sequence. The multiple lane model is thus
able to be constructed with a one-dimensional probability
density function.

2 Multiple-model particle filter

Let us consider the problem to estimate a system state
vector from measurements
up to time . If the system state vector is described as

, where are continuous-valued states and
is a discrete-valued state, this problem can be solved re-

cursively using the following equations.

Prediction:

(1)

Update:

(2)

In (1), the and express the motion
model and state transition probabilities, respectively. Equa-
tion (2) is a Bayesian rule which calculates a posterior prob-
ability density function (pdf) from a likeli-
hood function and a prior pdf .
The multiple-model (MM) particle filter is a sequential
Monte Carlo approximation of the conceptual solution
given by (1) and (2) [7].
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3 Proposed method

The lane model is constructed by straight lines. They
are equivalent to lane boundaries (for example, white lines)
shown in Fig. 1. The set of lane boundaries is expressed as
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Figure 1. Coordinate system of road plane.

,
(3)

where the axis is perpendicular to the vehicle traveling
direction and is on the road plane. The variables and
respectively indicate the lane’s position and width. We pre-
pared four types of lane model according to whether there
is a lane beside the running lane as follows.

1) There is only the running lane.

2) There is a lane at the left side of the running lane.

3) There is a lane at the right side of the running lane.

4) There are lanes at the left and right side of the running
lane.

This lane models are described in Fig. 2.
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Figure 2. Model of two or more lanes.
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Figure 3. (a) Image captured with car-
mounted camera, (b) Edge image, (c) His-
togram of edges.

Figure 3 (b) is the edge image extracted from the boxed
region of the image shown in Fig. 3 (a). The edge histogram

obtained by voting edge points from
the edge image to the axis of the lane boundary position ( )
is shown in Fig. 3 (c).

We prepared the lane model as a probability distribu-
tion of edges on the axis. When edge points

are observed in an image where the edge
position is measured on the axis, it is considered that the
edge points were independently generated at each edge
point with a probability distribution function as follows.

(4)

In (4), is a coefficient to normalize .

is a histogram where one lane boundary is at in
an image. is also the histogram in which all of pix-
els in the target region in the box in Fig. 3 (a) are voted.

generates noise edges that are not for the lane bound-

ary. are coefficients that represent
whether there are lane boundaries in each model, as fol-
lows.

(5)

The likelihood of measurements is calculated with
and as follows.

(6)
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In (1), the following equations are used as the motion
model .

(7)

(8)

elsewhere
(9)

In these equations, and are randomly generated with
a zero-mean Gaussian distribution function with respective
variances and . The space of is closed such that

. The type of model is switched according
to the probabilities shown in Table 1.

Table 1. Transition probabilities of lane
model.

4 Experiment

The test image sequences were taken with cameras in-
stalled on the roof of a vehicle. Five cameras were installed.
Four were synchronized for forward and backward stereo.
They each had [pixel]. The remaining camera
was forward monocular, but it produced high-resolution im-
ages ( [pixel]). The vehicle run on both ordinary
and express roads for about thirty hours in total, capturing
image sequences at 30 [frame/sec]. The captured scenes
included scenes taken during daytime and nighttime.

For this experiment, we used the scenes captured by the
right camera of the forward stereo pair. The scenes were
taken in daytime on an express road.

4.2.1 Examples of lane estimation

Figure 4 is an example of lane estimation. Figure 4 (a)
shows the image of the left edge of the white line, and (b)
shows the voting result for edge points on the lane position
axis. Figure 4 (c) shows the original image on which the
estimated lane is drawn. In this figure, red thin lines show
peaks of the edge histogram , green thick lines are the
boundaries of the running lane, and yellow thick lines are
lane boundaries beside the running lane.

Figure 5 shows other lane estimation results. Images (a)
and (b) in this figure are examples of frames in which the
estimate of the multiple-lane model was successful. Image
(b) is a frame showing a changing lane sequence. Images
(c) and (d) are examples of failure frames where the type of
lane model could not be correctly estimated. In image (c),

(a) (b)

(c)

Figure 4. Example of lane estimation. (a) Im-
age of left edge of the white line, (b) Vot-
ing result of edge points on the lane posi-
tion axis, (c) Original image in which the es-
timated lane is drawn.

(a) (b)

(c) (d)

Figure 5. Examples of lane estimation.

this failure is supposed to have occurred because the white
line is dotted and the length is insufficient to recognize a
lane boundary. In image (d), a pair of edges is mistaken to
be a single white line because there is a similar structure to
white line on the road. In situations like (d), the estimation
may require other cues besides the edge cue.

Figure 6 shows lane estimation results for complicated
scenes. Figure 6 (a) shows a curved scene. In this im-
age lane position is approximately estimated, although the
lane’s curvature can not be estimated. The other examples
are results of complicated scenes with vehicles or traffic
signs painted on the road. The lanes were well estimated
even under these complex conditions.

4.2.2 Accuracy of lane position

Figure 7 shows the results of the estimated lane position
(solid line) compared with the true position (diamond

mark). The true position was manually detected in the im-
age and projected to the axis. The four graphs in this
figure are the results for lane change scenes. The estimated
results are reasonable.
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(a) (b)

(c) (d)

Figure 6. Examples of lane estimation in
complicated scenes.
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Figure 7. Results of estimated lane position
(solid line) compared with the true position

(diamond mark) detected manually and pro-
jected to the axis.

4.2.3 Feasibility of particle filter

We tested the feasibility of using the particle filter. Fig-
ure 8 shows the estimated lane positions for two cases:
one case using the maximum likelihood method and grid
search, and the other using the particle filter. The particle
filtering gave stable estimates, but the non-particle filtering
estimates were instable. Accordingly, we confirmed that
the particle filter works well for lane tracking.

5 Conclusion

This paper proposed a method of estimating the state of
a driving lane by using a multiple-model particle filter for
switching the type of multiple-lane model. This model rep-
resents whether there is a lane to the left or right of the
running lane or there are lanes on both sides of the running
lane. Using the context that an image is captured by car-
mounted camera, we simplified the lane detection problem
to reduce the estimates of the lane state. Assuming the lane
boundary is a straight line, the lane model can be repre-
sented as a one-dimensional parameter space. We used the
left edge of the white line as a lane boundary. In the par-
ticle filter, the likelihood of the lane’s model is calculated
from the distribution of edges voted in the one-dimensional
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Figure 8. Results of estimated lane position.

space.
We tested the method in an experiment using image se-

quences captured by a camera mounted on a car running
on an express road in daytime. The experimental results
showed that the method worked well in most situations
but also revealed the limitations of using only edge cues.
Where the white line is dotted line, the estimate of the type
of lane model failed. Our future work will thus involve de-
vising a way to handle dotted white lines.
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