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Abstract 

A system for detecting fundus lesions caused by diabetic 
retinopathy from fundus images is being developed. The 
system can screen the images in advance in order to re-
duce the inspection workload on doctors. One of the
difficulties that must be addressed in completing this sys-
tem is how to remove false positives (which tend to arise 
nearby blood vessels) without decreasing the detection 
rate of lesions in other areas. To overcome this difficulty, 
we developed so-called “dynamic selection” of a classi-
fier according to the position of a candidate lesion, and 
we introduced new features that can distinguish true le-
sions from false positives. The system—incorporating 
dynamic selection and these new features—was tested in 
experiments using 55 fundus images with some lesions 
and 223 images without lesions. The results of the experi-
ments confirm the effectiveness of the proposed system, 
namely, degrees of sensitivity and specificity of 98% and 
81%, respectively. 

1 Introduction 

Though efforts to prevent diabetic retinopathy have
been ongoing for more than 20 years, diabetes has been 
still one of the most serious diseases in many countries. 
Patients are always threatened by the fear of blindness 
caused by diabetic retinopathy [1]. In Japan, the number 
of people who take medical examinations in order to keep 
their health in good condition has been increasing. During 
the examination of diabetic retinopathy, the doctor exam-
ines fundus images taken by special cameras. However, 
the current situation that the number of images is increas-
ing drastically makes the doctor's workload very heavy. 
This is the reason that a CAD (computer aided detection) 
system for automatically detecting diabetic retinopathy is 
eagerly expected. 

Usher et al. developed a system to detect the lesions of 
diabetic retinopathy [2][3]. The system is comprised of 
image normalization (step 1), image analysis for detecting 
basic portions such as the blood vessels and the optic disk 
(step 2), detection of candidate lesions (step 3), and dis-
crimination of true lesions from false positives (FPs) (step 
4). Here, FPs are not lesions but portions detected as le-
sions incorrectly. Step 2 excludes the portions of blood 
vessels and the optic disk from the whole fundus image, 
because these portions usually have no diabetic retinopa-

thy lesions and the color of the portions is very similar to 
that of lesions. This step can simplify the discrimination 
of true lesions (TLs) from false positives (FPs) in the next 
step. The detection of candidate lesions is executed by a 
special segmentation based on region growing and adap-
tive binarization. Step 4 uses a neural network that utilizes 
the intensity and geometrical features detected from the 
candidate lesions. 

In Usher's system, the positions of candidate lesions are 
not utilized in the classifier. But our research revealed that 
the FPs tend to arise in nearby blood vessels, because the 
intensity around the blood vessels varies complicatedly 
and the classification is very difficult. This fact will con-
tribute to decreasing the number of FPs. 

This paper firstly describes the intensity normalization 
essential for precise detection of lesions and the detection 
of basic portions as preprocesses. Secondly, it is shown 
that the degree of difficulty in lesion detection varies with 
the distance between a lesion and its nearest blood vessel. 
This fact leads to the idea of “classifier selection” for de-
creasing the number of FPs around blood vessels. Thirdly, 
actual classification based on some new features from the 
periphery of candidate lesions is proposed. Finally, a sys-
tem applying the proposed techniques is evaluated by 
experiments using actual fundus images. 

2 Detection of lesions 

Fig. 1 shows the flow diagram of the lesion detection 
process. The left and the right sides of the figure indicate 
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the pre-processing parts and the lesion detection parts, 
respectively. In this process, intensity normalization and 
classifier selection are introduced, and new features that 
allow the classifier to detect candidate lesions around 
blood vessels are also introduced. 

2.1 Detection of basic portions 

The detection of basic portions such as blood vessels 
and the optic disk from an input image is done by  
pre-processing. The intensity of the input image is nor-
malized in advance using Sinthanayothin's method [4]. 

Himaga's method [6] can be used to extract blood ves-
sels. With this method, first, the input image is 
transformed into an image in which the blood vessel re-
gions are emphasized by matched filters composed of
Gaussian kernels. Directional recursive region growing 
segmentation (D-RRGS) technique is then applied to the 
image to extract blood vessel regions. The extraction of 
the optic disk can be completed by the matching with a 
standard template of an average image of the optic disk 
patterns. 

2.2 Intensity normalization for lesion detection 

Intensity normalization is necessary for detecting true 
lesions because their intensities are essential features. This 
normalization consists of two processes:  area-dependent 
normalization (ADN) and area-independent normalization 
(AIN). The objective of the ADN is to correct the low 
brightness of the pixels at the outskirts of a fundus image 
caused by the lack of lighting intensity and the aberration 
of the lenses, while the objective of AIN is to remove the 
difference in the intensity of the individual fundus and that 
of the lighting environment. 

In ADN, first, a window around a target pixel r0 to be 
normalized is set. And RW(r0) is denoted as the pixel set in 
the window and RF as the pixel set of the whole fundus 
image except the blood vessels and the optic disk. The 
difference of ADN from Sinthanayothin's method [4]�is
that the average and standard deviation that are used to 
correct V (in an HSV color system) at r0 are calculated in 
region RW(r0) RF, because the existence of the blood ves-
sels in RW(r0) affects them. 

The equations used in ADN are shown from (1) to (3). 
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|R|: the number of elements in set R�

After ADN, AIN is applied to the whole fundus image
except the blood vessels and the optic disk for correcting 
the difference in the intensity of the individual fundus and 
that of the lighting environment. AIN uses the average and 
the standard deviation of V given by equations (4) to (6).  
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An example of the intensity normalization is shown in 
Fig. 2. In the figure, (a) is the original image and (b) is the 
normalized image. It can be seen that the shadow at the 
outskirts of (a) is corrected in (b). Fig. 3 is a magnified 
image of the white rectangle area in Fig. 2(b). In Fig. 3, 
(a) is the result of the conventional method in which blood 
vessels and optic disk are used to calculate 0),( rrvavg

and 0),( rrvstdev , and (b) is that of the proposed method. 
In comparing the intensities of the areas between blood 
vessels, it is clear that those of Fig. 3(a) are brighter than 
those of Fig. 3(b).  This is because the calculation of 

0),( rrvavg  of equation (1) includes blood vessels whose 
intensities are low, as in Fig. 3(a). When 0),( rrvavg

becomes low, according to equation (1), the normalized 
value )(~ rv will be high apparently. On the other hand, 
that kind of problem such a high )(~ rv does not occur in 
the case of the proposed method.

2.3 Detection of candidate lesions 

The segmentation and the adaptive thresholding tech-
nique are utilized to detect candidate lesions [2][3]. They 
are applied to the G-image in a RGB color system, be-
cause the G-image has the most information in fundus 
images [5][7]. The region growing method is used for this 
segmentation. This method makes groups from pixels with 
similar values: that is, it can extract one candidate region 
(i.e., a set of pixels) as one lesion. Next, adaptive thresh-
olding is applied to the G-image with segmented region 

 (a) Input image          (b) Normalized image 
Figure 2. Intensity normalization 

   
 (a) Conventional method      (b) Proposed method 

Figure 3. Comparison of the intensity 
normalization methods 
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information. The regions whose average G-value is 
brighter than the peripheries' G-value are detected as 
bright lesions. Such regions are exudates and cotton wool 
spots. The regions whose average value is darker than 
their peripheries' value are detected as dark lesions such as 
microaneurysms and haemorrhages.

2.4 Classifier selection 

The analysis of detected candidate lesions proved that 
FPs arise more frequently nearby blood vessels as shown 
in Figs. 4 and 5. The horizontal axis indicates the city 
block distance of a FP from its nearest blood vessel. The 
broken line indicates the number of FPs that are more than 
the value on the horizontal axis away from their nearest 
blood vessels. The solid line indicates the ratio of the 
number of FPs against the number of TPs. According to 
Figs. 4 and 5, the nearer a candidate lesion is to its nearest 
blood vessel, the higher probability that the candidate is a 
FP. To increase the reliability of our system, this fact can 
be made good use of in our approach to reduce the number 
of FPs. 

The candidate lesions far from their nearest blood ves-
sels can be classified by using neural networks [2][3].  
The input features are average intensity, geometric char-
acteristics of the candidate lesion, and so on. On the other 
hand, the candidate lesions around the blood vessels are 
classified by a classifier based on rules using several new 
features. The features include intensity, area, shape of the 
candidate and relative intensity to its periphery. The latter 
classifier is described in Section 2.5. 

The classifier for a candidate lesion is selected accord-
ing to its distance from its nearest blood vessel. A different 
threshold distance for selecting a classifier has been de-
termined for each kind of lesion. Because the slope of a 
solid line of bright lesions (shown in Fig. 4) is not steep, 
the one-pixel-distance covering the peak is set as the 
threshold. Candidate lesions whose distance from their 
nearest blood vessel is within one pixel are input into the 
new classifier for bright lesions, while the other candi-
dates are input into the neural networks for bright lesions. 
On the other hand, the solid line of dark lesions (shown in 

Fig. 5) is dull more than a distance of four pixels; there-
fore, four-pixel-distance is set as the threshold. The 
procedure of this classifier selection is the same as that in 
the bright lesion case. (Note that above thresholds are de-
termined under the condition that the image size is
700×605 pixels. In the case of a different image size, it is 
necessary to change the thresholds accordingly.) 

2.5 New classifier 

As described above, a different classifier is utilized ac-
cording to the distance from the nearest blood vessel to 
the candidate lesion. A neural network, which uses fea-
tures such as intensity and geometric characteristics is 
applied to classify the candidate lesions far away from the 
nearest blood vessel [2][3].  

To design the new classifier for the candidate lesions 
around the nearest blood vessels, the following two fea-
tures must be considered: (i) regions that are bright and lie 
along the blood vessels tend to be FPs of bright lesions 
and (ii) partial regions that cannot be extracted as blood 
vessels tend to be FPs of dark lesions. To discriminate 
these FPs from true lesions, we proposed the following 
new features.�

2.5.1 Bright lesion 
In this subsection, the classifier that corresponds to Fig. 

1(a) is explained. Regarding the difference between the 
features of type-(i) FPs and those of true lesions, it is 
shown that FP’s intensity gives a weak contrast with its 
periphery and that it has a line-shape along the blood ves-
sel. To obtain the intensity contrast, one new feature is 
proposed, namely, the ratio of the average of G (in a RGB 
color system) in a candidate lesion (Fig. 6(a)) to the one at 
the periphery (Fig. 6(d)). Hereafter, we call this feature 
“G-ratio”. The G-ratio near the value of 1 means that the 
lesion has almost the same intensity as its peripheral. The 
high G-ratio, much more than 1, means that the lesion is 
much brighter than its peripheral, and vice versa. On the 
other hand, to obtain the shape feature of a FP, another 
new feature is proposed. This feature is based on the de-
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Figure 4. Number of FPs (bright lesions) according to the 
distance from nearest blood vessel 
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gree of touching between the candidate lesion and a pe-
ripheral blood vessel. Hereafter, we call it “T-degree”, 
which is calculated from equation (7) 

lpT bpd (7)

where l denotes the length of the contour of the candidate
lesion, and pbp denotes the number of pixels of its contour 
that are in the expanded blood vessel region (Fig. 7). 
When the candidate lesion is thin and close to the blood 
vessel, T-degree will be high. 

The classification for the type-(i) bright lesions uses 
G-ratio, T-degree, and an additional feature to remove the 
noise, namely, the area of the candidate lesion. In order to 
examine the new features' effectiveness, simple classifier 
is appropriate. Thus, we adopted simple thresholding as a 
classifier. The threshold for each feature is determined in 
advance by analyzing distribution of each faeture. The 
candidate lesion whose features exceed all thresholds is 
regarded as a true bright lesion in this classification. 

2.5.2 Dark lesion 
In this subsection, the classifier that corresponds to Fig. 

1(b) is explained. Table 1 lists the characteristics of TLs 
and FPs among dark lesion candidates. Most type-(ii) FPs 
arise under conditions #2 or #4. Further investigation of 
the type-(ii) FPs suggests G (in RGB color system) of the 
type-(ii) FP tends to be brighter than that of the peripheral 
blood vessels (Fig. 6(b)). Therefore, a new feature, called 
G-BV-difference, namely, the difference between average 
G in candidate lesions (Fig. 6(a)) and average G in the 
peripheral blood vessels (Fig. 6(b)), is assigned. 

As described in 2.5.1, simple thresholding is applied to 

the classification of type-(ii) dark lesions. Firstly, 
screening according to lesion size and shape is executed. 
Next, lesions with large T-degree are extracted. Lastly, 
these lesions are classified by using the G-BV-difference 
and G-ratio. G-ratio is a feature used in the bright lesion 
classifier, but it is also effective for classifying dark le-
sions. The threshold for each feature is determined in 
advance by analyzing the distribution of each feature. The 
lesion candidate whose features exceed all thresholds is 
regarded as a true dark lesion in this classification. 

2.5.3 Experimental results 
The proposed system is evaluated by experiments using 

85 fundus images with lesions and 223 images without 
lesions. The images were 700×605 pixels in size and
24-bit RGB color. The experimental results show that the 
sensitivity of the system is 98% and specificity is 81%. 
The sensitivity is the ratio of the number of images in 
which lesions are detected to the number of all images 
with lesions. The specificity is the ratio of the number of 
images in which lesions are not detected to the number of 
images without lesions. The conventional system, which 
has neither the selection of classifiers nor new features, is 
also evaluated. The results are listed in Table 2. The new 
system has improved specificity of 19 points while the 
sensitivity stays at 98%. This means the new system can 
remove FPs without decreasing lesion detection rate.  

2.5.4 Conclusion 
We developed a system to detect fundus lesions of dia-

betic retinopathy. The system is characterized by a
classifier selection controlled by the positions of candidate 
lesions and a new classifier with several new features to 
discriminate true lesions and false positive lesions. The 
proposed techniques can solve the difficulties in classify-
ing the lesions in the area around the blood vessels. 
Experimental results show the system has improved speci-
ficity of 81% and the same sensitivity of 98% as a 
conventional system. Moreover, the system indicates the 
position of the lesions by circles as shown in Fig. 8. The 
white circles indicate the positions of bright lesions, and 
the black circles indicate the positions of dark lesions. 

When analyzing fundus images by batch processing, 
the system can process about 1,000 images during the 
night (approximately 12 hours). This throughput is more 
than the number of images examined in a day at a medical 
center. We therefore propose that the outputs from the 
system could be used as a kind of “second opinion” in 
health examinations. 

Our future work includes the automation of building up 
classifiers by AdaBoost-like techniques. 
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Table 1. Characteristics of TLs and FPs 

# size shape TLs/FPs tendency 

1 small � Many TLs. 

2 middle circle There are many type-(ii) FPs 

when T-degree is large. 

3 large circle Almost all FPs. 

4 large line There are many type-(ii) FPs 

when T-degree is large. 

Table 2.�Experimental result 

 Sensitivity Specificity 

Conventional system 98% 62% 

Proposed system 98% 81% 

289



References 

[1] E. Stefánsson: “Prevention of diabetic blindness”, British 

Journal of Ophthalmology, vol. 90, pp. 2-3, Jan. 2006 

[2] D. Usher, M. Dumskyj, M. Himaga, T. Williamson, S. 

Nussey and J. Boyce: “Automated Detection of Diabetic Reti-

nopathy in Digital Retinal Images: a Tool for Diabetic 

Retinopathy Screening”, Diabetic Medicine, vol. 21, iss. 1, pp. 

84-90, Jan. 2004 

[3] D. Usher: “Image Analysis for the Screening of Diabetic 

Retinopathy”, A thesis of King’s College, University of London 

[4] C. Sinthanayothin, J. Boyce, H. Cook and T. Williamson: 

“Automated localization of the optic disc, fovea, and retinal 

blood vessels from digital colour fundus images”, British Jour-

nal of Ophthalmology, 83(8), pp. 902-910, Aug. 1999 

[5] A. Osareh, M. Mirmehdi, B. Thomas and R. Markham: 

“Classification and Localisation of Diabetic-Related Eye Dis-

ease”, 7th European Conference on Computer Vision, pp. 

502-516, May 2002 

[6] M. Himaga, D. Usher and J. F. Boyce: “Accurate Retinal 

Blood Vessel Segmentation by Using Multi-Resolution Matched 

Filtering and Directional Region Growing”, IEICE Trans. INF. & 

SYST., vol. E87-D, no. 1, pp. 155-163, Jan. 2004 

[7] A. D. Hoover, V. Kouznetsova and M. Goldbaum: “Locating 

blood vessels in retinal images by piecewise threshold probing of 

a matched filter response”, IEEE Trans. Medical Imaging, vol. 

19, iss. 3, pp. 203-210, Mar. 2000 

Figure 8: Detected lesions  

290


