
A Configurable Window-Based Processing Element for

Image Processing on Smart Cameras

Fabio DIAS, François BERRY, Jocelyn SEROT, François MARMOITON

LASMEA - Laboratoire des Sciences et Matériaux pour l’Electronique et d’Automatique

Université Blaise Pascal - 24 avenue des Landais - 63177 Aubière - FRANCE

{dias, berry, jserot, marmoito}@lasmea.univ-bpclermont.fr

Abstract

Image processing in real-time is known as a high
processing-power consuming task. Smart cameras deal
with this problem by adding embedded processing re-
sources to the camera architecture. This way, early
low-level vision tasks can be done internally, before
transmission to the host system and helping to prevent
from communication bottlenecks. This paper presents a
configurable window-based processing element, tailored
for implementation on a FPGA device. Window-based
operations are often required for image filtering, fea-
ture detection, tracking, etc. In this work, some par-
ticular points of these applications are analyzed, and it
is shown that a general computational model can be ex-
tracted. This model is applied to conceive a processing
element, able to perform several window-based opera-
tions. A hardware implementation of the configurable
window-based operator is proposed, and a smart cam-
era platform, able to host such processing element, is
presented and detailed.

Keywords: Smart camera, embedded processing,
SIMD processing, reconfigurable architecture, FPGA-
based system.

1 Introduction

Real-time image processing is a challenging domain
for research and industry. Big amounts of data and
intensive repetitive calculations are two major prob-
lems to deal with when conceiving a system that must
process images at video rate. Even with recent out-
standing advances in microelectronics, standard PC
architectures are frequently unable to deliver required
performances for such applications.

Cameras with embedded processing resources, also
known as smart cameras, may be a solution to deal
with such artificial vision constraints. The approach
consists of executing early vision tasks by the cam-
era itself, before data transmission to the host sys-
tem. Early vision tasks therefore allows to reduce data
amounts to be transmitted, avoiding communication
bottlenecks and reducing overheads. For example, in a
tracking application, the camera can transmit only the
image portion containing the tracked pattern or object,

strongly reducing the communication flow (face track-
ing application for mobile videophones for instance).

On the other hand, transmitted data can be more
pertinent than raw pixel flow coming from the image
sensor. The enhanced pertinence would help the host
system to simplify some high-level tasks. For example,
an embedded corner and edge detector allows to send
to the host system only a list of characteristic points,
and small image samples containing these points. This
strategy allows to reduce the communication flow, and
saves the host system from executing a feature detec-
tor over the whole image. If the full image is needed
for a given operation, it can be transmitted in low res-
olution, through embedded down-sampling.

Smart cameras [2] and smart camera networks [1] [4]
are both subjects of growing interest. Several domains
and applications are concerned, among them video-
surveillance, robotics, quality control and intelligent
vehicles. Processing resources may be added to the
camera hardware in form of FPGA devices, embedded
processors, DSP’s, etc. However, addition of these de-
vices makes the implementation tasks more complex,
as the heterogeneous nature of the system requires co-
design techniques and tools. The work presented here
is a part of an approach towards a design methodology
for heterogeneous smart camera platforms.

This methodology relies on a programming tool able
to generate a suitable hardware architecture for a given
application model. The generated architecture is based
on a set of configurable processing elements, which
must be able to deal with scalar data, vectors and also
matrices (image samples), which is the most natural
data format when dealing with images. A managing
module is responsible for task sharing, data deploy-
ment and synchronization of different processes.

Early vision tasks frequently involve neighborhood
operators, combining several adjacent pixels to pro-
duce a single result. Examples are convolution (spatial
filters, wavelets), correlation estimation (SAD, SSD)
and morphological transformations (dilatation and ero-
sion). These operations imply a great number of mem-
ory accesses, and repetitive computations over the whole
image. Being time and processing expensive, the op-
timization of these processes is essential to achieve
temporal performances imposed by the real-time con-

276

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN

8-13



straint. Parallelism must be massively exploited, and
memory access redundancy must be reduced.

This paper proposes a window-based processing el-
ement, tailored for implementation on a FPGA de-
vice in a smart camera platform. The central idea
is to detect computational similarities among different
window-based operators, and to exploit these common
features in order to conceive a configurable processing
element.

This paper is organized as follows: in the next sec-
tion, some window-based operations frequently employed
in image processing are analyzed, and a common com-
putational structure is extracted. In section 3, a func-
tional architecture for a configurable window-based pro-
cessing element is proposed. Thus, in section 4, the
smart camera research platform is briefly described,
followed by some conclusions and perspectives for fu-
ture work in the last section.

2 Window-based operations

2.1 General computational model

Window-based operations are often applied for low-
level image processing. Median, mean and gaussian
filtering, correlation estimation for feature matching,
image difference for background extraction, all these
operations are window-based or can be expressed as
it. Thus, a processing element able to deal with this
class of applications may be of particular interest for
a smart camera. In order to design such a process-
ing element, some frequently employed neighborhood
operators are reviewed in this section. The goal is to
show that some basic features are shared by different
operators, and that a general computational model for
window-based processing can be extracted. The inter-
est of such model is to inspire a generic structure for
low-level image processing, analog to an ALU (Arith-
metic Logic Unit) on a processor architecture.

We consider that a window-based operation can be
performed following a model that gets two image sam-
ples as inputs and may produce two different outputs:
an image sample or a scalar value. In this way, we ar-
gue that a window-based operation is a composition of
3 functions such as:

x = FR(FM(FD(A(i,j), B(i,j)))) (1)

Q(i,j) = FM(FD(A(i,j), B(i,j))) (2)

where A(i,j) and B(i,j) are the input image operands,
Q(i,j) is an image result and x is a scalar result.

• The first function FD : (Z,Z) → Z applies inde-
pendently for each pair of elements from the image
operands A(n×n) and B(n×n). The result from FD

function is an image R(n×n) where:

R(i,j) = FD(A(i,j), B(i,j)) (3)

Typically, the FD function is a simple arithmetic or
logic operation.

• The second function FM : Z → Z has only one
input image operand. This function is applied inde-
pendently for each element of R(n×n), producing the
image result Q(n×n) such as:

Q(i,j) = FM(R(i,j)) (4)

Classically, FM is normalization, absolute value, thresh-
olding, ...

• The last operation is a reduction function FR :
(Z2) → Z, applied on all n2 elements of the matrix
Q(n×n), and producing a scalar result x:

x = FR(Q(i,j)) (5)

Our goal is to show that equations 1 and 2 can de-
scribe a great number of window-based operations, de-
pending on the choice for functions FR, FM and FD.
To that, some examples among the most frequently em-
ployed window-based operations are analyzed below.

2.2 Examples of low-level processing

Convolution is one of the most employed opera-
tions for low-level processing. Several different results
can be obtained, depending on the employed mask.
The general mathematical formula is given below, where
A is a (n× n) window around pixel (x, y) from the in-
put image, and B is the constant (n × n) convolution
mask:

Conv(x, y) =
1

k

∑

(i,j)

{A(i, j) × B(i, j)} (6)

Constant k is a normalization factor, and depends
on the nature of the mask. The same calculation must
be performed for each pixel on the input image, pro-
ducing one pixel of the resulting image, except for bor-
der areas. The convolution computation for pixel (x, y)
can be expressed as:

R(i, j) = A(i, j) × B(i, j) (7)

Q(i, j) = R(i, j)/k (8)

Conv(x, y) =
∑

(i,j)

Q(i, j) (9)

Thus, equation 1 can express a convolution when
FD is a multiplication, FM is a division by k (or mul-
tiplication by 1/k, or bit shifts if k is a power of 2) and
FR is a sum.

277



Table 1: FD, FM and FR for different window-based
operations

Operations FD FM FR

Convolution A × B R/k
∑

Q
SAD A - B |R|

∑
Q

SSD A - B R2
∑

Q
Mean filter A × 1 R/n2

∑
Q

Max filter A × 1 R Max Q
Image Difference A - B |R| -

Binary ImD A - B thold(R) -
Eroded B ImD A - B thold(R) AND Q
Binary Dilation A and B R OR Q
Binary Erosion A or !B R AND Q

Greyscale Dilation A + B R Max Q
Greyscale Erosion A - B R Min Q

Another example of window-based processing is cor-

relation computation. This technique is currently em-
ployed to perform feature matching, detecting the pres-
ence of a given pattern in an image (an object or part
of it for example). The pattern is defined as a (n × n)
sample, which will be compared with each portion of
the input image in order to detect its presence and lo-
cation. One of the most used correlation functions is
the sum of absolute differences (SAD), as described in
equation 10 where A is an image sample around pixel
(x, y), and B is the searched pattern:

SAD(x, y) =
∑

(i,j)

|A(i, j) − B(i, j)| (10)

Equation 10 shows that the SAD computation can
also be decomposed into three functions (FD is a sub-
straction, FM is an absolute value function and FR is
a sum).

Other window-based algorithms that can be taken
as examples are image difference (ImD eq.11) or
binarized image difference (B ImD eq. 12):

ImD(i, j) = |A(i, j) − B(i, j)| (11)

B ImD(i, j) = Threshold[A(i, j) − B(i, j)] (12)

These operations are currently employed for motion
detection, with A and B being parts of two consecu-
tive images from a sequence [3]. FD is a subtraction
for both operations, FM is an absolute value for the
first and a thresholding function for the second. How-
ever, outputs of these functions are matrices, and not
scalars. So, the reduction function FR does not need
to be performed.

Morphological transformations can also be con-
sidered. In this case, operand B is the structuring ele-
ment. These operations and other examples are shown
in table 1.

Figure 1: Proposed global architecture for the process-
ing element.

3 Configurable Processing Element

As said in section 1, window-based processing re-
quires a big number of elementary operations and mem-
ory accesses. For a convolution by a (n × n) mask for
example, one will need (2×n2) memory readings (data
and mask loading), (n2) multiplications, (n2 − 1) ad-
ditions, one division and one memory writing (to store
result). These operations must be repeated (L − n +
1)×(W−n+1) times, where (L, W) is the image size. If
no optimizations are done, the same pixel can be read
up to n2 times. To achieve satisfactory performances,
memory reading redundancy must be reduced, and the
intensive repetitive calculations must be parallelized.

The classic approach for this kind of operation is
to employ line buffers, storing n − 1 lines from the
input image into FIFO structures, and receiving data
directly from the sensor’s output pixel flow. Once the
input pipeline is full, processing begins producing one
result for each data received, eliminating data redun-
dancy. However, line buffers requires a lot of hardware
resources, specially if the input image is big. Moreover,
if the input image size changes, the system architecture
must also be changed (FIFO depth). In this section,
a flexible solution based on the computational model
presented above is discussed. Other solutions can be
found in [6] and [7].

First considerations are about parallelism. As seen
in equations 3 and 4, functions FD and FM are ap-
plied independently for each input data element. It
means that there is an inherent exploitable data paral-
lelism, with several logic/arithmetic operations being
executed simultaneously in a SIMD structure.

A second source of potential parallelism is in the
computational model itself (eq. 1). Three functions
are executed, always in the same order, and receiving
the result of the previous function as input data. A
pipeline structure can be considered as a natural ar-
chitectural model to fit this kind of process. So, to
exploit both kinds of parallelism (data and task), we
propose a processing element consisting on a three lev-
els pipeline, with SIMD units in first two levels (figs.
1 and 2).

278



SIMD

Unit

x, -,  +,  =,

or, and, xor

SIMD

Unit

| |,  =,  <<,

>>, not,

thresholding

ReductionOperator

Max,  min, +, and, or

x

A

B

R Q

opcode opcode opcodeparameter

SIMD

Unit

x, -,  +,  =,

or and ,xor

SIMD

Unit

| |,  =,  <<,

>>, not

thresholding

Reduction Operator

Max,  min, +, and,or

x

A

B

R Q

opcode opcode opcodeparameter

,

Figure 2: Configurable window-based processor.

First level SIMD unit (FD) is able to perform si-
multaneously several logic or arithmetic operations, as
logic AND, OR, XOR, multiplication, addition, subtrac-
tion, and equality (multiplication by 1). Latency of
this stage is one clock cycle.

Second level SIMD unit (FM) performs operations
as absolute value, equality, thresholding, bit shifts and
logic NOT. A parameter input defines the threshold or
the number of bit shifts to perform. Multiplication
and division are not available in the operation set. A
multiplication would be necessary for SSD, but this
function is currently replaced by SAD, which is less
computational expensive and has the same qualitative
properties [5]. If a division by a non-power of 2 is
needed, it’s better to divide the scalar result x after the
reduction function, because several dividers in parallel
would be expensive in hardware terms. Latency of this
stage is one clock cycle.

The third level is the reduction function (FR). Logic
AND, OR, addition, max or min operations are applied
over input data, combining two elements per two in a
dyadic tree structure. If the input matrix is (n × n),
2× log2 n stages are needed. This is the latency for the
third level in clock cycles. Total latency of the pipeline
is 2 + 2 × log2 n.

For some operations like image difference, the re-
duction function is not applied. For this reason, it is
possible to output the matrix Q before the end of the
pipeline.

Input data coming from the image sensor is stored
into RAM memories. Then, input operands are loaded
from memory into two n × n register banks, and all
2× n2 registers can be accessed simultaneously by the
first SIMD unit. If necessary, the registers structure
can be adapted to fit a given application. For exam-
ple, the input register bank B can be replaced by (or
multiplexed with) the Q output feedback, working as
an accumulator on a classic ALU.

A managing module is responsible for input registers
loading and for configuring each stage (opcode setting)
to perform a given function. The processing element is
able to execute different operations according to the
control settings, functioning as an image processing
ALU. If the application only needs one or two kinds of
operations, a “light” version of the processing element

can be generated, for spatial optimization purposes.

Registers loading strategy is of particular impor-
tance to reduce memory access redundancy. As said
above, the same pixel can be used in up to n2 compu-
tations. A simple way to optimize registers loading is
being able to shift the input register matrix. If a n2

window is loaded for a computation, and the next one
is performed over the same window translated of one
pixel to the right, our input register has (n−1)n values
which can be reused. In this case, the input matrix is
shifted of one column, and only the n new elements
are loaded. The memory readings number is therefore
divided by n.

If operand B is constant (as frequently), it is loaded
only once. If not, a dual-ported memory (or two sep-
arate memories) should be used to allow both register
banks being loaded simultaneously.

A last consideration is about the choice of element’s
dimension (n). As registers loading has a lot of in-
fluence in the global performance, choosing a big n is
useless if the memory structure is unable to load the in-
put registers fast enough. Speedups obtained through
parallelization will be lost due to memory access over-
head. Memory type, structure, cadence, and word size
must be chosen in order to ensure that the processing
element will be able to deliver its optimal performance
for a given n. To that, register loading frequency must
be n times greater than the processing pipeline func-
tioning frequency, in order to avoid that the processing
element remains idle.

The window-based processing element proposed here
was implemented on a smart camera research platform.
Its hardware architecture is briefly described in next
section.

4 Smart Camera Platform

The smart camera platform (fig. 3) is based on a
CMOS image sensor and an ALTERA Stratix FPGA
device. The purpose of such platform is to perform
early vision tasks in real-time, before data transmission
to the external host system.

The Stratix EP1S60 FPGA device plays the central
role in the system, being responsible to interconnect
all other hardware devices. Surrounding it, 10Mb (5x
1MWords) of SRAM and 64Mb of SDRAM are avail-
able for image and data storage.

The choice of a CMOS image sensor is justified by
its random addressing capabilities. This feature is ex-
tremely important when dealing with applications as
feature tracking, where WOI (window of interest) ac-
quisition is needed. It allows to have a high-resolution
sensor (4 Mega-pixels), but not acquiring in full res-
olution all the time, what would be prohibitive face
to time constraints of some applications. Random ad-
dressing makes possible to have high resolution images
or high frame rates with the same sensor device, and

279



Figure 3: Smart Camera research platform.

Imager Lens

STRATIX
EP1S60

HOST
COMPUTER

Light
Sensitive

area

ADC

Imager addressing

SRAM Private memories

2 
M

o
@d
at

a

Global
memory
SDRAM
64 Mo

USB 2.0 or
IEEE 1394

@

Data

SENSOR

2 
M

o
@d
at

a

2 
M

o
@d
at

a

2 
M

o
@d
at

a

2 
M

o
@d
at

a

JT
A

G

U
A

R
T

Figure 4: Hardware architecture synoptic scheme.

according to the application needing.

One of the main features of this hardware plat-
form is its modularity and flexibility. Different hard-
ware devices are integrated in different boards (ex-
cept for memories, which share the same board as
the FPGA). These boards are interconnected together,
and can be replaced to allow the evolution of the plat-
form. Thanks to this feature this smart camera plat-
form has frequently evolved. The actual configuration
features a 4Mpix LUPA-4000 image sensor, from Fill
Factory/Cypress Semiconductors, and a Firewire In-
terface.

The LUPA-4000 image sensor can acquire up to
66Mpixels per second, and full resolution format is
2048 x 2048, each pixel coded in 10 bits. Image cap-
ture is done in global shutter mode. The acquisition
frequency allows a frame rate of more than 200frames/s
in VGA mode (640 x 480), in good lighting conditions.

The IEEE 1394 interface offers a real (exploitable)
bandwidth of 20Mbytes per second from the camera to
the external environment (host system), and 10 Mbytes/s
in the other direction. A synoptic scheme of the hard-
ware architecture is shown in figure 4.

5 Conclusions and Perspectives

This paper presented an architectural approach for a
configurable processing element able to perform window-
based operations. Element’s conception is based on
a computational model extracted from frequently em-
ployed image processing applications. Window-based
operations being processing and data consuming, such
kind of element presents a special interest for a smart
camera platform. FPGA implementation allows to ex-
ploit massive parallelism, in order to reach real-time
performances.

The proposed processing element architecture is im-
plemented in the hardware platform described in sec-
tion 4. The objective is to quantify the obtained per-
formance and FPGA occupation for several values of
n, in order to assess the validity and interest of this ap-
proach as part of a design methodology for embedded
early-vision systems.

References

[1] M. Bramberger, A. Doblander, A. Maier, B. Rin-
ner, and H. Schwabach. Distributed embedded smart
cameras for surveillance applications. IEEE Com-
puter, 39(2):68–75, 2006.

[2] P. Chalimbaud and F. Berry. Embedded active vi-
sion system based on an fpga architecture. EURASIP
Journal on Embedded Systems, 2007.

[3] F. Dias, P. Chalimbaud, F. Berry, J. Serot, and
F. Marmoiton. Embedded early vision systems:
implementation proposal and hardware architec-
ture. In Cognitive Systems with Interactive Sensors
(COGIS), 2006.

[4] R. Kleihorst, B. Schueler, A. Danilin, and M. Hei-
jligers. Smart camera mote with high performance
vision system. In International Workshop on Dis-
tributed Smart Cameras (DSC), 2006.

[5] H. Pourreza, M. Rahmati, and F. Behazin. Weighted
multiple bit-plane matching, a simple and efficient
matching criterion for electronic digital image sta-
bilizer application. In 6th International Conference
on Signal Processing, volume 2, 2002.

[6] C. T.-Huitzil and M. A.-Estrada. Fpga-based con-
figurable systolic architecture for window-based im-
age processing. EURASIP Journal on Applied Sig-
nal Processing, 7:1024–1034, 2005.

[7] H. Yu and M. Leeser. Optimizing data intensive
window-based image processing on reconfigurable
hardware boards. In IEEE Workshop on Signal
Processing Systems Design and Implementation, 2005.

280


