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Abstract

 of the fundamental challenges of human action 
recognition is accounting for the variability that arises 
during video capturing. For a specific action class, the 
2D observations of different instances might be extremely 
different due to varying viewpoint when the sequences
are captured by moving cameras. The situation is even 
worse if the actions are executed at different rates. In this 
paper, a novel view-invariant human action recognition
method is proposed based on non-rigid factorization and 
Hidden Markov Models (HMMs). By assuming that the 
execution of an action can be approximated by dynamic 
linear combination of a set of basis shapes, we show that 
the weight coefficients of basis shapes by measurement
matrix non-rigid factorization contain crucial informa-
tion for action recognition regardless of the viewpoint. 
Based on the extracted discriminative features, the
HMMs is used for action modeling and classification.
The performance of the proposed method has been suc-
cessfully demonstrated experimentally using real 
sequences.            

1. Introduction 

In recent years, the recognition of human gestures and 
actions has become an active research area within com-
puter vision community due to its potential applications 
such as video surveillance, human-computer interface,
content based retrieval and sports video analysis. 

Many approaches for human action recognition have 
been presented. The most common one taken by the re-
searcher is to perform action recognition using 2D 
observation. For example, A. F. Bobick et. al. used tem-
poral templates for human movement representation and 
recognition[1]. A.Efros et. al. introduced the motion de-
scriptor based on optical flow measurements in a 
spatio-temporal volume for each stabilized human figure, 
and an associated similarity measurement was used in a 
nearest-neighbor framework[2]. Takumi Kobayashi et al 
used cubic higher-order local auto-correlation for action
and simultaneous multiple-person identification[3].    
V. Kellokumpu et. al. presented a real-time system for 
recognition of 15 different continuous human activi-
ties[4]. Both of the above methods are viewpoint 
dependent. The training sequences and testing sequences 
are captured under the same viewing direction by sta-
tionary cameras. But in real life applications, for a 
specific action class, the 2D observations of different 
instances might be extremely different due to varying

viewpoint when the sequences are captured by moving
cameras. The situation is even worse if the actions are 
executed at different rates.  

Some of the view-invariant methods had been pro-
posed. C. Rao et. al. presented a computational 
representation of human action using spatio-temporal 
curvature of 2-D trajectory[5]. V. Parameswaran et. al. 
proposed a 3D based approach for view-invariant human
action recognition[6]. A. Gritai et al used the epipolar 
geometric constraints computed from the correspon-
dences of human body landmarks to match actions 
performed from different viewpoints and in different 
environments[7]. A. Yilmaz et. al. represented the action 
by a set of descriptor computed from a spatio-temporal 
action volume created from a set of object silhouette[8]. 
Again, the epipolar geometry between the views of two 
stationary cameras is exploited to achieve view-invariant 
recognition. The above view-invariant action recognition 
methods have the limitation that action sequences are
captured using stationary cameras. A. Yilmaz et. al. fur-
ther extended the standard epipolar geometry to the
geometry of dynamic scenes where the cameras are 
moving[9].  

In this paper, a novel view-invariant human action 
recognition method is proposed based on non-rigid fac-
torization and Hidden Markov Models (HMMs). By 
assuming that the execution of an action can be ap-
proximated by dynamic linear combination of a set of 
basis shapes, we show that the weight coefficients of
basis shapes by measurement matrix non-rigid factoriza-
tion contain crucial information for action recognition 
regardless of the viewpoint. Based on the extracted dis-
criminative features, the HMMs which allows for the 
inclusion of dynamics, is used for action modeling and 
classification. The performance of the proposed method 
has been successfully demonstrated experimentally using 
real sequences. 

This paper is organized as follows: Section 2 describes  
the feature extraction based on non-rigid factorization. 
Section 3 presents the method of applying HMMs to 
human action modeling and recognition after a brief re-
view of HMMs. Experimental results using real life 
dataset are presented in section 4, followed by conclu-
sions in section 5.    

2. Feature extraction based on non-rigid 
factorization 

As in [6,7,8,9], this work does not address the 
lower-level processing tasks such as body-joint detection 
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and tracking. We concentrate on how to construct dis-
criminative features for action recognition under varying
viewpoint directions and different execution speed, given
the 2D trajectories of anatomical landmarks on human
body. There are many possible sets of features that could
be used for action recognition, but the optimal choice of
view-invariant is not obvious. It is difficult to recognize
actions captured by moving cameras because the 2D ob-
servations might look quite different even the same
person performing action of the same category. This is
true both for contour based representations and landmark
trajectories based representations. Fig. 1 shows an exam-
ple using sample walking sequences. Fig. 1(a) and 1(b)
are two walking sequences performed by different person.
Fig. 1(c) and 1(d) are the 2D trajectories observations for 
the two walking sequences under same viewing direc-
tions by stationary camera, respectively. It can be seen
that even the two sequences are performed by different
persons, the 2D observations still look similar since they
belong to the same action class and the body joints move
in a consistent way. Fig. 1(e) and 1(f) are the 2D trajec-
tories observations for the two walking sequences
projected using moving cameras, with the trajectories
superimposed. Due to the motion of the camera, it is
evident that not only the trajectories in Fig.1(e) and 1(f) 
do not appear similar, but also the trajectories in Fig.1(c)
and 1(e) look quite different even these sequences per-
formed by a same person belong to the same action
category.

(a) (b)

(c)  (d)

(e) (f)

Figure 1: Example of sample walking sequences. (a)(b):
3D sequences; (c)(d): 2D trajectories with
stationary cameras; (e)(f): 2D trajectories
with moving cameras; for two different per-
formers respectively

Our approach for recognizing human actions in videos
acquired by moving cameras is based on the observation
that a deformable shape(human body), can be approxi-
mately represented by a linear combination of basis
shapes, where the weight coefficients assigned to each

basis shape change with time. We show that the defor-
mation coefficients of basis shapes contain the crucial
information for action recognition regardless of the
viewpoint changing.

It is well known that both shape and motion can be
factorized directly from the measurement matrix con-
structed from feature point trajectories under 
orthographic camera model and rigidity assumption[10].
The problem in the action recognition scenario is more
complex because the freedom for moving human body is 
extremely high due to the non-rigidity. C. Bregler[11]
and L. Torresani[12] further extended the factorization
method for non-rigid case. Suppose that P feature land-
marks are tracked across F frames, the deforming shape
can be described as a key frame basis set
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specific configuration is a linear combination of the basis
set as follows:

(1)
K

i

ii SlS
1

RlRSS i

XP

i ,, 3
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compared with the distance between object and viewing
camera, the projection procedure can be approximated
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ii represents the 2D projection observations of 
the feature point i.
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R contains the first two rows of the
full 3D camera rotation matrix and T is the camera
translation. It can be rewritten as follows after eliminat-
ing T by subtracting the mean of feature points as in
[10]:
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If we write all the feature points along the temporal

axis into a 2FxP matrix W:
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W is the measurement matrix and can be further de-
composed into the following form:
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L. Torresani[12] proposed an effective way for fac-
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torization of the measurement matrix W as above equa-
tion. First, the weighting coefficients

are randomly initialized,
and then the shape bases

FtKkl t

k ,...,1,,...,1,
KiSi ,...1, are computed in

the least-square-fit sense. Given an initial guess of the
rotation matrix R and the shape basis, the coefficients

can also be solved using linear least squares. Next,
given the shape basis and the weight coefficients, the
rotation matrix R can be recovered by parameterized
with exponential coordinates. The above procedures are
iterated until convergence. More details can be found in 
literature[12].

l

Denote the weight coefficient vector corresponding to
frame i as , then the vector se-
quence contains the necessary
information for action recognition regarding the human
body movement.
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describes the changing mode for
the body-parts. The s for different action categories
should exhibit different patterns while the s for same
action should have similar patterns. But the vector se-
quence can not be used directly for action 
recognition. Because in the iteration procedure of the
non-rigid factorization, no constraints has been imposed
on the shape basis. For action sequences of different in-
stances, the shape basis yield by non-rigid factorization
of the measurement matrix might also be different. In
order to make the comparison reasonable, we should put
the weight coefficients sequences under the same frame-
work, i.e., they should correspond to the same shape
basis set.

Suppose there are action classes to be recognized.
The number of training sequences for the i_th action
class is i . Denote the measurement matrix for the j_th
sequence of the i_th action class as 

j
, we stack all

training sequences vertically as follows:
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Here, we make use of the fact that all human figures
share the same skeleton structure. The procedure of sta-
cking measurement matrix can be imagined that the
subject undergoes a virtual movement from the position
in the last frame of i_th sequences to the position of the
first frame in the (i+1)_th sequence. After non-rigid fac-
torization, we can get the weight coefficient vector
sequences along the temporal axis as

i

j

i . If the length of the j-th 
sequence of the i_th action class is 

j
 , 

j
 can be

written in the following form,
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BASince the different actions share the same shape basis,
the discriminative  information for action recognition
are encoded in the

j

i s. Fig. 2 shows the examples of
the recovered weight coefficients for different action 
classes. Fig. 2(a) and (c) are for walking sequences of
two different performers with stationary viewing camera,
while Figure2(e) is also for walking sequence but pro-
jected from a moving camera. Figure2(b) (d) and (f)
are for running case under the same conditions like the

walking case. It can be seen that varying patterns of the
weight coefficients varying curves look similar for the
same action classes, even with different performers or
captured with a moving camera. On the other hand, the
patterns look quite different for different action classes. 
Thus the weight coefficients are appropriate for 
view-invariant action recognition of human body under
the condition of variability such as captured by moving
cameras.

3. Action Modeling and Recognition using 
HMMs

(a) (b)

(c)   (d)

  (e) (f)
Figure 2: The examples of the recovered weight coeffi-
cients. (a)(c) are for walking sequences by two different
performers with stationary viewing camera. (e) is also
for walking sequence but projected from a moving cam-
era. (b)(d)(f) are for running case under the same
conditions like the walking case.

Hidden Markov Models(HMMs) have been success-
fully used for speech recognition and computer
vision[13]. We employ the HMMs for action modeling
and recognition because it can be applied to model the
time series data well, such as the weight coefficients with
temporal variations. It allows for the inclusion of dy-
namics to model the action sequences. The HMM model
for the c-th action class is given by , cccc ),(
with number of states. Here c is the transition
matrix and c

N A
is the initial distribution. The c  pa-

rameter represents the probability distributions for the 
observed feature vector conditional on the hidden states.
In this work the HMMs with mixture of Gaussians is 
used for action modeling. Suppose each state has a bank
of M Gaussian components, then the parameter
consists of the following items: the mean vector

B

cB

im ,
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the mixture coefficient im and the full covariance ma-
trix for Gaussian component in hidden state ,
where .

c

im m i
NiMm ,...,1,,...1

The model parameters are adjusted in such a way that
the likelihood )|( ccOP is maximized by using the
given set of training data set c , which denotes the
weight coefficient vector sequences along the temporal
axis for action class . The Baum-Welch algorithm[13]
is used for iteratively re-estimate model parameters to
achieve the local maximum.

O

c

Given a test sequence for an unknown action with the
corresponding feature vector sequence , we first ap-
ply the non-rigid factorization to compute the
deformation coefficients. It should be noted that the basis
shape should keep same as obtained during training pro-
cedure. That is to say, we only need to iteratively
estimate the rotation matrix and the weigh coefficients.
Then we use maximum likelihood approach for the clas-
sification:

O

)|(maxarg
},...,1{

c
Cc
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4. Experiments

Experiments are performed on CMU human motion
capture data for real action sequences. It should be noted
that during the experiments procedure, only the 2D pro-
jected observations are used and we did not use any Z
information. The dataset used in our experiment consists
of eight representative classes of actions with each class
has several sequences performed by different persons,
which are evenly split into training sets and testing sets. 
The eight action classes include “walking”, “running”,
“dribbling”, “kicking”, “boxing”, “jumping”, “wheeling”
and “dancing”. For the purpose of verifying the claim in
this paper that the weight coefficients vector sequence is
discriminative for recognizing actions in varying view-
point, the 2D feature point trajectories are computed with 
projections using randomly generated rotation matrixes.
The purpose is to simulate the real life conditions of rec-
ognizing actions using image sequences captured by
moving cameras. We use the HMMs with the topology of
6 hidden states and each observation is modeled by using
mixtures of 3 Gaussian densities. K , which denotes the
number of basis shapes, is empirically set to 3. In table 1
we give the results of action recognition using the pro-
posed view-invariant recognition framework. The
experiments are repeated for 20 times while in each time
the whole dataset are randomly split into training and 
testing sets. It can be clearly seen that the proposed
method works robustly under the condition that the cap-
turing cameras are moving.

Table 1: Recognition rate

Action walking running dribbling kicking

Rate 93.75 92.86 95.00 96.67

Action boxing jumping wheeling dancing

Rate 95.50 95.00 95.00 96.25

5. Conclusion

In this paper, we propose a novel method for
HMMs-based view-invariant human action recognition.
The feature vectors are extracted via non-rigid factoriza-
tion by treating all of the training sequences under the
same ground. The extracted weigh coefficients encode
the discriminative information for action recognition.
Based on those features, a set of HMMs were built for
each action category. The recognition results are con-
vincing and show that our algorithm is robust to the
variations in viewing direction and execution rate.
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