
Patch Based Localization of Visual Object Class Instances

Alexandra Teynor and Hans Burkhardt

Universität Freiburg

Chair of Pattern Recognition and Image Processing

79110 Freiburg, Germany

{teynor,burkhardt}@informatik.uni-freiburg.de

Abstract

Huge image databases require the automatic analysis of

image content in order to retrieve information. Especially

the detection and localization of visual object class mem-

bers is an important issue. In this work, we deal with the lo-

calization of visual object class members in a patch based

object recognition framework. In particular, we show how

not only the location and scale of an object can be deter-

mined, but also the orientation, a parameter typically ne-

glected in current localization systems. Our method uses

features computed at Difference of Gaussian interest points

and remembers the orientation of the local patches relative

to the reference object. Using a general Hough transform

like voting scheme, the position and orientation of query ob-

jects can be retrieved. Tests on two different leaf databases

show the capabilities of the approach.

1 Introduction

Today, an enormous mass of digital image data is stored

in big archives, e.g. at publishing companies, news agen-

cies and also on our home desktop computers. Computer

assisted retrieval systems are necessary in order to find

data again. Content based image retrieval (CBIR) methods

have shown to be successful in searching for images based

on their pixel content only. Researchers now focus on the

recognition of instances of visual object classes like cars,

cows or airplanes. To achieve simple scene understanding,

it is beneficial to also localize objects in an image. Methods

using the local appearance of image patches have shown to

be very successful for classification, so we investigate the

question of localization also in this context. In addition to

the position and the scale of the object in question, we also

consider the orientation, which is neglected by most other

localization approaches. This information can help future

image retrieval systems to evaluate the relative position and

orientation of objects in an image better. Of course, tak-

ing into account the orientation of objects is not necessary

for all types of objects, since cars e.g. are likely to be found

with the wheels on the ground. However, the orientation of

other objects, like e.g. leaves, is not fixed.

The outline of this paper is as follows: first, we describe

work related to our method in section 2, then explain the

feature extraction and localization procedure in section 3.

Tests and results can be found in sections 4 and 5. In sec-

tion 6 we set out our conclusions.

2 Related Work

Using local information at specific points in an image

has shown to be successful for object class recognition,

since it can deal with object shape variability and partial

occlusions. Recently, a variety of methods has been pro-

posed. They can mainly be divided into two categories: on

the one hand approaches using only feature cluster frequen-

cies without location information like Csurka et al. [2] or

Deselaers et al. [3], on the other hand methods also incor-

porating the spatial information of the patches.

Examples of the latter are Fergus et al. [6] and Fei-Fei et

al. [5]. They use a so called “constellation model”, i.e. spe-

cific local image features in a probabilistic spatial arrange-

ment. Leibe et al. [7] introduced a joint classification and

segmentation method for visual object classes. Their gener-

alized Hough transform [1] like voting approach is related

to our method, however, the rotation of the objects is not

considered by them. A method that directly influenced our

approach was presented by D. Lowe [8] for the detection

of identical objects: the Scale Invariant Feature Transform

(SIFT), however, we deal with object classes.

Most object recognition systems determine at most the

position of visual object class members, not their orienta-

tion, so our algorithm offers extended functionality. Only

recently, Mikolajczyk et al. [9] introduced a framework that

is also capable of identifying the orientation of objects.

3 Method

Our method consists of two main parts: the creation of a

model database using training images and the localization

procedure itself. It is summarized in table 1, a more precise

description can be found in the next section.

3.1 Feature extraction and training

In order to determine the local appearance of an object,

we extract Difference of Gaussian (DoG) interest points in

the images and compute SIFT features at these locations.

We use the program provided by D. Lowe for this task. For

each key-point, we get a location as well as size and ori-

entation information. The orientation is the dominant gra-

dient direction of the patch. We relax the discriminativity

of the 128 dimensional SIFT descriptors while still coding

the main characteristics of the patch: we perform a PCA

on the feature vectors and only use a reduced set of coeffi-

211

MVA2007 IAPR Conference on Machine Vision Applications, May 16-18, 2007, Tokyo, JAPAN

7-1



Table 1: Summary of the algorithm

Feature extraction and training: For all training images:

1. Extract DoG interest points from the image. Discard interest

points not related to the object. This can be achieved e.g. by

using a segmentation mask of the object or other automatic

procedures [4].

2. Determine SIFT features for each interest point coding the

local appearance. Reduce the dimensionality by using a PCA

(principal component analysis).

3. For each interest point, calculate the position of the object

reference point relative to the interest point location, orien-

tation and scale. Normalize the object scale with the interest

point scale. Store this as geometry information.

4. Store the appearance features in a kd-tree or best-bin-first

tree, retain a link to the specific geometry vector. This forms

the model database.

Localization procedure: For a testing image:

1. Extract DoG interest points and calculate appearance fea-

tures as in the training images.

2. Use the appearance vectors of each interest point for a near-

est neighbor search in the model database.

3. Use the scale, position and orientation of the interest points

together with the geometry vector associated to the respec-

tive nearest neighbors to determine hypothetic object posi-

tions, locations and scales. Store the votes in a 4D-Hough

array.

4. Determine the maximum in the Hough space to get a possi-

ble object position, location and scale.

5. Perform a stability check on the solution found, otherwise

search for the next maximum in the Hough array.

s
′

r

x
′

r

|xi|

x
′

i

ϕ
′

iϕi

s
′

i

Figure 1: Geometry information extraction

cients. Using 2/3 of the dimensions turned out to be suffi-

cient in experiments.

Together with the appearance information, for every in-

terest point pi in a training image, a vector vi coding the ge-

ometry gets extracted. It contains the distance of the point

to a reference point, the direction to the reference point and

the size of the object, relative to the interest point scale and

orientation.

vi = (di, ϕi, si)

xi = x
′

r − x
′

i

ϕi = arg(xi + yi ·
√
−1) − ϕ′

i

di = |xi|/s′i
si = s′r/s′i

with x
′

r and s′r being the object reference point and scale,

x
′

i, s′i, ϕ′

i the location, scale, and orientation of the inter-

est point pi, and xi = (xi, yi). The superscript ′ is attached

to the directly measured values. These parameters are vi-

sualized in figure 1. In our experiments, we determine the

center of gravity as the object reference point. Other points,

e.g. the center of a bounding box could have been chosen

as an alternative. For training, images containing the ob-

jects in a reference orientation (0◦) and scale are used.

The interest points are not restricted to the shape (out-

line) of the object, but may lie on any characteristic part.

The appearance vectors of all training images are stored in

a kd-tree to allow for a fast nearest neighbor search.

3.2 Localization procedure

For the localization of rotated objects in a query image,

interest points and features get extracted in the same way as

for the training images. We use the appearance vector for

a point pj to retrieve the k nearest neighbors (with k = 3
in our case) in the reference database. The geometry vec-

tor of each nearest neighbor (now referenced with vj,n) is

used to establish a hypothesis of a possible object location,

orientation and scale, relative to the query interest point pj:

d̃j,n = dj,n · s′j
x̃j,n = d̃j,n · cos(ϕ′

j)

ỹj,n = d̃j,n · sin(ϕ′

j)

ϕ̃j,n = ϕj,n + ϕ′

j

s̃j,n = sj,n · s′j

where the ˜denotes hypothetic parameters and

n ∈ {1, 2, . . . , k} the index of the current nearest neigh-

bor.

All parameter sets vote for an entry in a 4D accumula-

tor array as in a generalized Hough transform [1]. We em-

ploy a fuzzy voting approach disseminating the vote not

only to the exact bin, but also to the neighbors to cope with

small object deformations. Matched patches with a distance

above a threshold get discarded. In order to localize an ob-

ject, we search for maxima in the Hough space. The voting

process is visualized in figure 2: in the first image, all in-

terest points with their scale and orientation are shown. The

features extracted at these points are used for a k-nearest

neighbor search. In the second image, the resulting votes

for possible object centers are displayed (all scales and ro-

tations simultaneously). The hypothetic center points are

connected with the respective interest points by a red line.

The last image shows the localization of the object bound-

ing box, together with the interest points supporting this hy-

pothesis.

3.3 Eliminating unstable votes

Sometimes many votes for a specific parameter combi-

nation come from a single direction. These points are very

unstable and might result from clutter in the scene. We fa-

vor parameter sets that get votes from different directions.

To verify this, we also record the directions the votes came

from. We quantize the angles into n sectors and require the

votes to come from at least two non neighboring sectors, en-

suring a minimum angle between voting interest points of

212



Figure 2: Localization process

at least 2π
n

. In our case, we use 8 sectors resulting in a re-

quired angle of minimum 45◦.

4 Experiments

For our experiments, we decided to use leaves as ob-

jects since they are likely to be found in any rotational posi-

tion in an image and are naturally to be found in many vari-

ations. For the first experiments, we use the Caltech leaf

database1. There are 6 different leaves from 3 tree types,

each leaf photographed 10 times in a cluttered office back-

ground, resulting in a database of 180 images.

We rotated the test images randomly and recorded the

angles. Since DoG interest points found along edges are re-

moved by the SIFT detector, the newly introduced edges

in the resulting images do not affect the localization proce-

dure. To also have a database with naturally rotated images

for our experiments, we created a database by ourselves,

where the leaves were photographed in fixed orientations

in front of similar office backgrounds. We photographed 10

different leaves of a tree in 8 orientations and in 7 differ-

ent scenes, resulting in 560 images. The images are of size

640x480. Only grayscale information was used.

Training was performed on images with the objects in

a reference orientation and size. The training leaves were

segmented in order to calculate the center of gravity as the

object reference point and to avoid background patches in

the database. We performed cross-validation tests with a

leave-one-object-out approach, i.e. the same leaf instance

was never used for training and testing, despite being pho-

tographed in front of different backgrounds.

For all experiments, the Hough space was quantized to

30 bins for the x direction, the y direction and the angle, as

well as 10 bins for the scale. For the Caltech leaf database,

the experiments were performed on the 3 leaf classes sep-

arately as well as on the entire dataset. This shows that

the approach is capable of localizing objects despite hav-

ing more than one object class in the reference database.

We tested the best descriptor dimensionality, the accu-

racy of the estimated object reference point, the orientation

of the object as well as the total localization accuracy (po-

sition and orientation). Scale changes were not tested ex-

plicitly, since all leaves in all databases are about the same

size.

1 http://www.robots.ox.ac.uk/˜vgg/data3.html

Table 2: Correct position in % and average distance in pixel

∆ = 1 bin ∆ = 1.5 avg. dist

Caltech all 86.1 94.4 24.8

Caltech tree 1 81.7 91.7 27.2

Caltech tree 2 95.0 96.7 24.7

Caltech tree 3 88.3 95.0 34.5

own db 96.1 98.9 11.7

5 Results

5.1 Position

A good object reference point is important for a precise

object localization, so we first verify this. We list the per-

formance of the position estimates with tolerance 1 and 1.5

times the bin width of the localization grid. When within the

respective bound, the position estimate is considered cor-

rect, otherwise false.

The results in table 2 show that for the Caltech tree 2

category and our own leaves the position estimates are very

good, with inferior results for the Caltech tree 1 and tree

3 categories. Inspecting the wrong estimates for the tree 1

category revealed a reason for this. The algorithm produces

competing hypotheses for objects with partial rotation sym-

metric structures. A subset of the leaf ”fingers” might hint

at a different position (and orientation) of the leaf. For this

specific dataset, mainly one leaf instance (with two main

leaf peaks instead of one) was responsible for the errors.

The algorithm chooses one of the two peaks as the main

peak and estimates the position accordingly.

Such errors are easy to remedy, since we know the rough

position and orientation of the object. We can, e.g., corre-

late an object mask in a small neighborhood of the esti-

mated object position to refine the parameters. To verify

that we only need to test a small vicinity, we increase the

tolerance to 1.5 times the bin width. We can see that the

performance increased dramatically. In Table 2 we list the

average distance of the estimated to the real object refer-

ence point. For correct matches, the distance will usually

be smaller, since its value is influenced by false results (es-

timated reference points not related to the object, usually

far away in the image).

5.2 Orientation

We are not only capable of detecting the position of ob-

ject class instances in an image. The core novelty in our

213



Figure 3: Example localization results on our database

Table 3: First column: correct orientation in %, other

columns: Correct position and orientation in %

∆ = π/12 ∆ = 1 bin ∆ = 1.5 bins

Caltech all 86.7 80.6 86.7

Caltech tree1 73.3 68.3 73.3

Caltech tree2 93.3 93.3 93.3

Caltech tree3 91.7 85.0 91.7

own db 94.3 92.3 94.3

approach is that we are also able to detect the orientation.

Since we deal with natural objects, we allow a tolerance of

π/12 in either direction for the rotation angle, for greater

differences the estimated angle is considered false. The re-

sults for this experiment can be seen in table 3.

In spite of the results for almost all leaf categories be-

ing good, the orientation assignment for the Caltech tree

1 category seems worse. Again, the wrong estimates are

mainly images from the outlier leaf instance with the two

leaf peaks. Since for this leaf, no other images with this

geometry can be found in the database, we consider this a

plausible error. Please note that despite the less accurate po-

sition estimate for the Caltech leaves of type 3, the orienta-

tion was estimated correctly in most cases.

5.3 Localization

In the last test we show the total localization perfor-

mance (position and orientation) of the approach, with the

results listed in table 3. Images with either the reference

point distance or orientation not in tolerance were consid-

ered false. Again, we list the results for distance threshold

of 1 as well as 1.5 times the bin distance.

The results show that for geometrically stable objects,

a very good overall performance can be achieved. Incor-

rect estimates are mainly due to a slightly inaccurate posi-

tion hypothesis, orientation estimates were correct in most

cases. This is especially visible when comparing the over-

all performance for the wider threshold with the orienta-

tion only evaluation: it is mostly the same for both experi-

ments. As described above, the rough position hypotheses

can be refined using the first position estimate as seed and,

e.g., utilizing correlation to get a more exact match.

When looking at the results for the tests involving all

Caltech leaf categories, we verify that the approach is capa-

ble of localizing variable leave instances with different leaf

types in the reference database. The result for the whole

database is only slightly worse than the average of the indi-

vidual categories.

6 Conclusions

We introduced a method to localize rotated instances of

visual object class members using local patch information.

We could verify the capability to estimate the right position

and angle for natural objects in cluttered scenes. Especially

the orientation estimation works very well.

A prerequisite for the approach is that enough stable in-

terest points can be found on an object. Here other scale in-

variant interest point detectors should also be tested, to fur-

ther improve the results.

Acknowledgments

This work was partially funded by the EU MUSCLE

NoE (FP6-507752). The segmentation software used in this

work was written by Ilkka Luoma from PRIP, Vienna Uni-

versity of Technology. We would also like to thank Javier

Cano for his KD-tree library.

References

[1] D. Ballard. Generalizing the Hough Transform to detect Ar-

bitrary Shapes. Pattern Recognition, 13(2), 1981.

[2] G. Csurka, L. Dance, J. Willamowski, and C. Bray. Visual

Categorization with Bags of Keypoints. In ECCV Workshop

on Stat. Learning in Comp. Vision, pages 59–74, 2004.

[3] T. Deselaers, D. Keysers, and H. Ney. Discriminative train-

ing for object recognition using image patches. In Proc.

CVPR, volume 2, pages 157–162, 2005.

[4] G. Dorko and C. Schmid. Selection of Scale-invariant Parts

for Object Class Recognition. In Proc. ICCV, 2003., pages

634–639 vol.1, 2003.

[5] L. Fei-Fei, R. Fergus, and P. Perona. Learning Generative

Visual Models From Few Training Examples”. In Proc. of

the Workshop on Generative-Model Based Vision, Washing-

ton, DC, June 2004.

[6] R. Fergus, P. Perona, and A. Zisserman. A Sparse Ob-

ject Category Model for Efficient Learning and Exhaustive

Recognition. In Proc. CVPR, San Diego, June 2005.

[7] B. Leibe, A. Leonardis, and B. Schiele. Combined Ob-

ject Categorization and Segmentation with an Implicit Shape

Model. In Proc. of the Workshop on Statistical Learning in

Computer Vision, Prague, Czech Republic, May 2004.

[8] D. G. Lowe. Distinctive Image Features from Scale-invariant

Keypoints. IJCV, 60:91–110, 2004.

[9] K. Mikolajczyk, B. Leibe, and B. Schiele. Multiple object

class detection with a generative model. In Proc. CVPR,

2006.

214


