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Abstract

We present an approach for simultaneous monocular 3D

face pose and facial animation tracking. The pose and fa-

cial features are estimated from observed raw brightness

shape-free 2D image patches. A parameterized 3D face

model is adopted to crop out and to normalize the shape

of patches from video frames. Starting from the face model

aligned on an observed human face, we learn the relation

between a set of perturbed parameters of the face model

and the associated image patches using a Canonical Corre-

lation Analysis. This knowledge, obtained from an observed

patch in the current frame, is used to estimate the correc-

tion to be added to the pose of the face and to the animation

parameters controlling the lips, eyebrows and eyes. Ground

truth data is used to evaluate both the pose and facial ani-

mation tracking efficiency in long real video sequences.

1 Introduction

This paper addresses the problem of tracking in a monoc-

ular video sequence the global pose of a face as well as

the local motion of its main inner features, due to expres-

sions or other facial behaviors. Face tracking poses chal-

lenging problems because of the variability of facial ap-

pearance within a video sequence, most notably due to

changes in head pose, expressions, lighting or occlusions.

Many popular learning-based or model-based approaches

have been proposed. The first ones, also called view-based

approaches, can be formulated as a classification problem

based on labeled training examples of 2D face appearances.

The second ones generally use a 3D model that is projected

into the image and matched to the face to track. Most ap-

proaches rely on image cues like key points, curves, op-

tical flow, appearance or skin color, and make use of lin-

ear/nonlinear generative or discriminative statistical models

to work with 2D facial shape or global appearance mani-

folds (AAMs, etc.). Others consider part-based statistical

representations of the face. A recent work that addresses

pose estimation from images is [5]. The method is based on

the use of kernel Canonical Correlation Analysis to learn

the dependencies between the pose and the appearance of

an object.

The idea proposed in this paper consists in combining a 3D

parameterized geometric face model, used to crop out 2D

image patches from incoming video frames, and a linear

CCA. The 3D model state (pose and internal geometry) at

a given time is efficiently estimated from the observed im-

age patches in the current frame using CCA. This approach

provides an elegant and simple way to estimate both the

3D pose of the face and the internal facial features. CCA

corresponds to a low-rank approximation of multiple lin-

ear regression: this makes the model fitting more robust to

noise, if compared to linear regression based approaches.

The training is done on synthetic images with known pa-

rameters, and needs fewer samples, if compared to other

strategies based on Active Appearance Models. In the pa-

per, we compare both the pose and the facial animation es-

timation with publicly available ground truth data to access

the method effectiveness.

2 Face representation

In this work we use the so-called Candide-3 [1] 3D generic

face model to acquire the 3D geometry of a person’s face

and the associated texture map for tracking purposes.

a.

b.

c.

d.

Figure 1: (a) 3D Candide model aligned on the

target face in the first video frame with the 2D

image patch mapped onto its surface (upper right

corner) and three other semi-profile synthesized

views (left side). Three stabilized face images

used for tracking (b) the pose: SFI 1, (c) the eye-

brows and the eyes: SFI 2, and (d) the mouth:

SFI 3.

This 3D parameterized face model is controlled by Ani-

mation Units (AUs). The wireframe consists of a group of

3D interconnected vertices to describe a face with a set of

triangles. The vector g consists of the concatenation of all
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the vertices, and can be written as g = gs + Aτa, where

the columns of A code 69 face Animation Units and the

vector τa is used to control facial mimics so that different

expressions can be obtained. gs corresponds to the static

geometry of a given person’s face. gs and τa are initialized

manually, by fitting the Candide shape to the face shape fac-

ing the camera in the first video frame (see Figure 1.a). The

facial 3D pose and animation state vector b is then given

by:

b =
[

θx, θy, θz, tx, ty, tz, τ
T
a

]T
, (1)

where θ. and t. components stand respectively for the

model rotation around three axes and translation. In this

work, we limit the dimension of τa to 9, in order to only

track eyebrows, eyes and lips (b ∈ R
15).

The geometric model g(b) is used to crop out underlying

image patches from the video frames and to transform faces

into a normalized facial shape for tracking purposes. We

consider here a stabilized 2D shape free image patch to rep-

resent the facial appearance of the person facing the cam-

era and to represent observations from the incoming video

frame Y. The patch is build by warping the rawbrightness

image vector lying under the model g(b) into a fixed size

2D projection of the standard Candide model without any

expression (τa = 0). Depending on the face’s region of in-

terest, we use one of the patches depicted in Figure 1.b, 1.c,

and 1.d. These patches can be written as x = W(g(b),Y),
where W is a piecewise affine warping operator.

3 Integrated tracking framework

Our algorithm for face and facial animation tracking is

composed of three steps: initialization, learning and track-

ing. These three steps are more precisely described in the

following sub-sections.

3.1 Initialization

The Candide model is placed manually over the first video

frame Y0 at time t = 0 and reshaped to the person’s face.

The correct alignment is obtained considering the 3D model

with the corresponding 2D image patch mapped onto its

surface, combined with three other semi-profile synthesized

views (Figure 1) used mainly, if necessary, to refine the

adaptation of the face’s depth. Once the model is aligned,

we get the state vector b0, and the reference stabilized face

image:

x
(ref)
0 = W(g(b0),Y0). (2)

3.2 Training

Due to the high dimensionality that arises when working

with images, the use of a linear mapping to extract some

linear features is common in the computer vision domain.

In our case, we are interested in identifying and quantifying

the linear relationship between two data sets: the change in

state of the Candide model and the associated facial appear-

ance variations. We propose to use a Canonical Correlation

Analysis (CCA) to find linear relations between two sets of

random vectors [2, 6]. CCA finds pairs of directions or ba-

sis vectors (also called canonical factors) for two sets of

m vectors, Q1 ∈ R
m×n and Q2 ∈ R

m×p, such that the

correlations between the projections of the vectors onto the

directions are mutually maximized.

Let A1 and A2 be the centered versions of Q1 and Q2, re-

spectively. The maximum number of basis vectors that can

be found is min(n, p). If we map our data to the directions

w1 and w2 we obtain two new vectors defined as:

z1 = A1w1 and z2 = A2w2. (3)

and we are interested in maximizing the correlation ρ =
z

T

2
z1√

z
T

2
z2

√
z

T

1
z1

. The solution consists in finding vectors

w1 and w2 that maximize zT
2 z1 subject to the constraints

zT
1 z1 = 1 and zT

2 z2 = 1.

In this work, we use the numerically robust method pro-

posed in [6]. We compute singular value decompositions of

the data matrices A1 = U1D1V
T
1 and A2 = U2D2V

T
2 ,

and then, the following the singular value decomposition:

UT
1 U2 = UDVT , to finally get:

W1 = V1D
−1
1 U and W2 = V2D

−1
2 V, (4)

where matrices W1 and W2 contain respectively the full

set of canonical correlation basis vectors. In our case, the

matrix A1 contains the difference between the training ob-

servation vectors xTraining = W(g(bTraining),Y0) and

the reference x
(ref)
0 , and the matrix A2 contains the varia-

tion in the state vector ∆bTraining given by bTraining =
b0 + ∆bTraining . The m training points were chosen em-

pirically from a non-regular grid around the vector state ob-

tained at initialization.

Once we have obtained all the canonical correlation basis

vectors, the general solution consist in performing a linear

regression between z1 and z2. However, if we develop the

correlation for each pair of directions with the assumptions

made above, we get ‖A1w1 − A2w2‖2 = 2(1 − ρ) simi-

larly as in [3]. Based on our experiments, we observe that

ρ ≈ 1, and so, we use the relation A1w1 ≈ A2w2. If we

substitute matrices A1 and A2 by ∆bt and (xt−x
(ref)
t ) in

the last relation, we come that ∆btw2 = (xt − x
(ref)
t )w1.

This is true for all the canonical variates, so we use equa-

tions (4) to get a result for all the directions:

∆bt = (xt − x
(ref)
t )G, (5)

where G = V1D
−1
1 UVT D2V

T
2 , encodes the linear

model used by our tracker, which is explained in the fol-

lowing section.

3.3 Tracking

The tracking process consists in estimating the state vector

∆bt when a new video frame Yt is available. In order to do

that, we need, first, to obtain the stabilized face image, from

the incoming frame by means of the state at the preceding

time, as:

xt = W(g(bt−1),Yt), (6)
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and then make the difference between this image and the

reference stabilized face image x
(ref)
t . This gives an error

vector from which we estimate the changes in state with (5).

Then we can write the state vector update equation as:

b̂t = bt−1 + (xt − x
(ref)
t )G. (7)

We iterate a fixed number of times (5, in practice) and

estimate another b̂t according to (7) and update the state

vector. Once the iterations are done, we update x
(ref)
t+1 =

αx
(ref)
t + (1− α)x̂t, with α = 0.99 obtained from experi-

mental results.

4 Implementation

The algorithm has been implemented on a PC with a

3.0 GHz P4 processor and a NVIDIA Quadro NVS 285

graphic card. Our non optimized code uses OpenGL for

texture mapping and OpenCV for video capture. We use a

standard desktop Winnov analog video camera to generate

the sequences for tests. We retain the following nine

animation parameters, for facial gesture tracking:

(1) upper lip raiser

(2) jaw drop

(3) mouth stretch

(4) lip corner depressor

(5) eyebrow lowerer

(6) outer eyebrow raiser

(7) eyes closed

(8) yaw left eyeball

(9) yaw right eyeball

Based on the algorithm described in section 3, we have

implemented a tracker that uses three stabilized face im-

ages (see Figure 1) sequentially: one to track the head pose

(SFI 1), one to track the lower face animation parameters

(SFI 3), and a last one (SFI 2) to track the upper face

animation parameters. SFI 1, SFI 2 and SFI 3 are re-

spectively composed of 96 × 72, 86 × 28, and 88 × 42
pixels. For training, we use 317 state vectors with the cor-

responding appearance variations for the pose, 240 for the

upper face region and 200 for the mouth region. We chose

these points empirically, from a symmetric grid centered on

the initial state vector. The sampling is dense close to the

origin and coarse when getting far from it. Due to the high

dimensionality of our state vectors, we did not use all the

combinations between the selected points.

5 Experimental results

For validation purposes, we use the video sequences de-

scribed in [4] for pose tracking, and the talking face video

made available from the Face and Gesture Recognition

Working Group, for both pose and facial animation track-

ing. These sequences are supplied with ground truth data.

In this section, we show and analyze quantitatively the per-

formance of the tracker over the two types of video se-

quences.

3D pose tracking. Video sequences provided in [4]1 are

200 frames long, with a resolution of 320 × 240, 30 fps.,

1www.cs.bu.edu/groups/ivc/HeadTracking/

taken under uniform illumination, where the subjects per-

form free head motion including translations and both in-

plane and out-of-plane rotations. Ground truth has been

collected via a “Flock of Birds” 3D magnetic tracker. Fig-

ure 2 shows the estimated pose compared with the ground

data. Temporal shifts can be explained because the center

of the coordinate systems used in [4] and ours are slightly

different. In our case, the three axes cross close to the nose,

due to the Candide model specification, and in the ground

truth data, the 3D magnetic tracker is attached on the sub-

ject’s head. We check experimentally on all the provided

video sequences the stability and precision of the tracker

and do not observe divergences of the tracker.
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Figure 2: 3D pose tracking: the graphs show

the estimated 3D pose parameters during track-

ing (dashed lines) compared to ground truth (solid

lines).

Figure 3: Sample frames at times 16, 40, 54, 67,

106, 128, 146, 185 and 197.
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Simultaneous pose and facial animation tracking. The

talking face video sequence consists of 5000 frames (about

200 seconds of recording)2, with a resolution of 720× 576,

taken from a video of a person engaged in conversation.

For practical reasons (to display varying parameter values

on readable graphs) we used 1720 frames of the video se-

quence, where the ground truth consists of characteristic 2D

facial points annotated semi-automatically. From 68 anno-

tated points per frame, we select 52 points that are closer to

the corresponding Candide model points. In order to eval-

uate the behavior of our algorithm we calculated for each

point the standard deviation of the distances between the

ground truth and the estimated coordinates.
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Figure 4: Left: mean standard deviation of the 52
facial points for each frame. Right: video frames

from top to bottom: 476, 993, and 1107.

Figure 5: Tracking results using a webcam.

Figure 4 depicts the standard deviation over the whole

video sequence for each point. We can see that the points

with the greater standard deviation correspond to those on

the contour of the face. The precision of these points is

strongly related to the correctness of the estimated pose pa-

rameters. We see that the mean standard deviation of the 52
facial points stays approximately constant with some peaks.

These peaks correspond to important facial movements. In

case of frame 993 the rotation around the y axe corresponds

to 36.62◦. In frame 1107, the rotations around on the x, y

2www-prima.inrialpes.fr/FGnet/data/01-TalkingFace/

and z axes are respectively −13.3◦, 18.9◦ and −10.5◦. We

observe on the whole video sequence that even if peak val-

ues are large, the tracker still performs correctly.

The average time for pose and facial animation tracking is

about 46 ms per frame if we exclude the time for video

read, decompression and write/display operations. The av-

erage time for training is 23.2 seconds.

Experiments have been conducted to evaluate the sensitiv-

ity of the facial animation tracker in case of unprecise 3D

pose estimations. We added some random noise to the six

pose estimated parameters before estimating the facial an-

imation, within the following intervals: ±10% of the esti-

mated head width added to the three translation parameters,

and ±3◦ added to the three rotation parameters. Such per-

turbations not not introduce visible effects on the tracking

results. Figure 5 displays sample frames from other video

sequences, to show the robustness of the tracker even in

case of cluttered backgrounds.

6 Conclusion

We have presented a method to track both 3D pose and fa-

cial animation parameters from persons in monocular video

sequences. The approach is simple, from the training and

tracking point of views, robust and accurate in case the out-

of-plane face rotation angles stay in the interval ±30◦. The

method can still be improved. As regards immediate ex-

tensions, the method will be combined with a facial feature

detection algorithm to re-synchronize the tracking in case

of divergence.
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