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Abstract

This paper deals with visual servoing for a pan and tilt cam-

era embedded in a drone. Video is transmitted to the ground

where images are processed on a PC, and turret controls are

sent back to the drone. The objective is to track any fixed ob-

ject on the ground without knowledge about shape or texture

and to keep it centered in the image. In order to achieve this

task an algorithm that combines feature-based and global

motion estimation is proposed. This algorithm provides a

good robustness to very strong video transmission noise and

works at a frame rate close to 25 fps. The control of the sys-

tem is based on a double closed loop, which achieves a fast

convergence to the desired position. Experimentation in real

conditions shows the effectiveness of the proposed scheme.

1 Introduction

The most critical part in a visual servoing system is to find

reliable visual information to estimate the motion between

two images. These algorithms should be robust to noise, es-

pecially in our case where a strong noise due to the video

transmission can appear. They should be accurate and pro-

vide estimation of large displacement due the drone’s mo-

tion. They should also have a low computational cost in

order to achieve a fast processing rate. In that field, there

are lot of studies. The literature can be classified into three

classes of contribution. The first class is based on the extrac-

tion and tracking of geometric features. The second class re-

lies on the definition of a model for the object to track while

the third class uses motion analysis. The first class, known

as feature-based focuses on tracking 2D features such as

geometrical primitives (points [1, 2], lines, segments, el-

lipses [3], contours [4]) to deduce the inter-frame displace-

ment. The main advantages of these algorithms are their

simplicity and their computational cost. On the other hand,

the quality of results depends on features’ density, further-

more these algorithms are very sensitive to noise and large

displacements. The second class, known as model-based,

defines a model of the desired tracked object, such as CAD

model [5, 6]. They generally amount to pose estimation.

Then the visual servoing task consists in moving the robot

until the current pose of the object corresponds to the desired

pose. They are more robust but need a priori knowledge of

the target, which is not realistic in the application context

of this paper. The third class of methods is used when the

scene is too complex and the extraction of simple primitives

is impossible [7, 8, 9]. The approach are here based on the

estimation of a set of parameters which describes the trans-

formations and the displacements of a part of the image or

of the whole image by minimizing an error function. No

extraction of geometrical primitives is needed. The choice

of a well suited error function and the use of efficient tech-

niques of minimization allow the description of complex 2D

transformations such as affine or homographic motion. The

main disadvantages of these methods are their slowness and

their lack of accuracy when the target is small compared to

the whole image. The first class is very interesting to the

visual servoing task of this paper. Indeed it provides track-

ing of objects contained in a small part of the image with a

high degree of accuracy. But due to the video transmission,

the quality of images is not constant. Moreover a bad video

transmission can severely damage or remove some part of

the image. If the damaged part of image contains the tracked

object all features are lost and tracking fails. Furthermore

large displacements can also cause tracking failures. Con-

sequently, in this context feature-based algorithms are not

robust enough. To solve this problem without loosing in

accuracy, we propose to combine a feature-based algorithm

with the third class of methods. This class provides an es-

timation of the global motion robust to noise and large dis-

placements. Indeed if damage appears in the image this kind

of algorithm permits to estimate the global motion in the part

of the image which is not damaged and continue to update

the position of features.

In this paper, the first section describes the feature-based

and global motion estimation algorithm used (KLT [1] and

RMRm [9]). Then a presentation of the proposed algorithm

for the visual servoing task is reported. The next section

presents the control law scheme based on two closed loops.

Afterwards, results obtained by this method with real im-

ages will be shown. Finally we will conclude and present

some future improvements.

2 Target Motion Estimation

Algorithm

2.1 Feature-based algorithm

The extraction of features and their tracking is based on the

well-known KLT algorithm [1]. The motion between an im-

age I at time t and an image I at time t+τ , can be described
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as follows with the hypothesis that illumination is constant:

I(p, t + τ) = I(p − θ(p, t, τ), t)

By this way an image taken at time t + τ can be obtained

by moving every points of the image taken at time t by the

appropriate amount θ. The vector θ represents the displace-

ment of the point p. This point is not a single pixel but the

center of an analysis window W . There are many methods

to choose a window [10] and many displacement models for

this window. According to computing time and our frame

rate we choose a small window and simple translation model

[2]. The displacement vector can be written as follows:

∀pεW θ(p, t) = d(t)

where d is the inter-frame displacement. The problem of

solving the motion between two frames is then to find the

parameter d that minimizes the dissimilarity

E =
∑

pεW

[I(p, t + τ) + 5I(p, t + τ).d − I(p, t)]2

where 5I(p, t) is the spatial image gradient computed at

point p. Finally to find the displacement d the above equa-

tion is minimized by the Newton-Raphston algorithm with a

mutliresolution strategy.

2.2 Global motion estimation algorithm

In order to estimate the global motion in the image, we de-

fine a parametric motion model. To compute it we use the

RMRm algorithm described in [9]. A Gaussian image pyra-

mid is constructed at each time. Let be θt the vector of the

motion model parameters at time t. The first estimation con-

sists in minimizing the criterion

C(θt) =
∑

p

ρ(∇I(p, t).ωθt
(p) + It(p, t))

where point p are all the points in an estimation support (the

whole image or a part of image), I is the intensity function

∇I and It are the spatial gradient and temporal derivative

ωθt
(p) is the velocity vector at point p provided by θ and ρ

a robust estimator such as the Turkey’s biweight function.

This estimator allows us to reject the outliers, i.e., points p

whose spatiotemporal gradient does not correspond to the

current estimation of θ. Then, a hierarchical and iterative

minimization strategy is used.

2.3 Feature-based algorithm with global mo-

tion compensation

The inter-frame motion has to be estimated in order to find

the position of the desired object in the image. Consider-

ing that the ground filmed by our drone is a planar surface,

two characteristics have to be taken into consideration: the

quality of images and the size of objects. So the algorithm

needs a high degree of accuracy and a good robustness. For

that, we combine the two algorithms presented above, KLT

for the feature points tracking and RMRm for the estima-

tion of the motion model. The algorithm breaks down into

several steps. A first step of initialization is necessary. It

Figure 1: Feature-based tracking with global motion com-

pensation

includes the extraction of feature points from the part of im-

age which contains the object selected by the user and the

initialization of the support to estimate the global motion

(i.e. the window where the parametric model is calculated).

This support is smaller than the whole image for computing

time reasons. On the other hand, it must be large enough in

order to contain a sufficient number of pixels even in case of

partial image transmission. In practice, estimation support

is a window of 200x200 for an image of 320x240. This size

also makes possible to limit the effect of edges. The sec-

ond step which corresponds to the tracking itself is divided

into two parts. The first part is the global motion estimation

using RMRm. In [11] a quadratic model is advocated to de-

scribe the motion. Actually estimating a quadratic model is

too long in computational time to be integrated in a closed

control loop. Consequently we choose to consider an affine

model to describe the global motion. In fact, the target is

fixed, so the global motion can be roughly approximated to

the target’s motion which allows a prediction of the position

of feature points.

The second part is the tracking of feature points by using

KLT. A multiresolution strategy is used to solve this equa-

tion. A pyramid of images is built, the original image is

divided into several images with different levels of resolu-

tion. Each level represents the original image with a reso-

lution divided by 2. The initialization is performed at the

lower level. The value of the displacement d of the feature

is initialized by the amount of the global motion previously

estimated. All the feature points are moved by this amount

that allows refining the research of the target. This process

can be assimilated to a feature points prediction. When the

minimization is done at this level, the position of the feature

point is projected to the upper level and the same scheme is

done until the upper resolution level is reached. As we will

see in section 4, the great advantage of this initialization by

RMRm is the increase in robustness.

Finally, a last step consists in testing the relevance of the

feature points found before updating the control. All the
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tracked feature points are tested. If the position of a fea-

ture is too far from the center of gravity of the group than

a threshold, the feature is rejected and the target’s posi-

tion is recomputed. During the second step, it happens that

KLT loses feature points on account of the unconvergence

of Newton-Raphston algorithm. In order to solve this prob-

lem we fix a threshold which corresponds to the minimum

number of feature points to continue the tracking. When this

threshold is crossed, new feature points are extracted around

the target position from the current image. This process al-

lows tracking target for a longer time. Finally, the adjusted

position is sent to the control. The algorithm is summarized

on figure 1.

3 Control With Two Closed Loops

In visual servoing tasks, the control law scheme is often a

simple proportional gain [12]. The dynamics of actuators

enabling the pan and tilt movements are neglected and their

transfer function are assumed to be a simple gain. In the

ideal case (absence of delays, quantization phenomena, fric-

tion, etc.), this provides an exponential convergence to the

desired position in the image. In the present context, the

motion of the target in the image can be fast and neglecting

the actuators dynamics is not suitable. Hence, inner con-

trol loops were designed to improve the angular speed of the

turret. Figure 2 illustrates the control structure. Note that,

for simplicity, the pan and tilt inner loops are schematized

as a single control loop. Proportional Integral controllers

(PI) provide this angular speed control. The PIs are tuned

to have a closed loop time constant of 10ms. Since only

the angular positions are measured thanks to potentiome-

ters, observers were developed in order to estimate the cur-

rent angular speed in pan and tilt. This is implemented on

chip embedded in the drone. The outer control loop is then

designed using the visual information and provides the set-

ting points to the inner loops using the error between the

desired (centered) and the current position of the target in

the image. A simple proportional gain is not sufficient to

insure convergence because of the delays in the loop due

to electronics, transmissions and image processing. A pre-

diction term based on a Pade approximation of the delay is

added to remove the oscillations introduced by the delays.

Note that contrary to classical automatic control theory, de-

lays and time periods are linked to the computational cost

of the image and control tasks and hence are not constant.

These variations are explicitly taken into account in the con-

trol law.

4 Results

All tests have been made with real images from the drone.

During a fly, tests are not reproducible. Due to this, differ-

ent algorithms are not comparable using the visual servoing

task. Furthermore real sequences do not authorize to test

a large range of object’s displacement. For all these rea-

sons, tests are made with a synthetic motion. This motion is

the displacement of a house between two images as shown

on figure 3. The first validation step demonstrates the use-

Figure 2: Control loops

fulness of RMRm in the algorithm proposed by comparing

KLT alone and KLT with RMRm. During a flight inter-

frame’s displacement of objects vary from small to large,

due to the drone motion. According to this we create a

house’s motion with amplitudes varying from 1 pixel to 65

pixels. Figure 4 shows the motion estimation error with re-

spect of the displacement amplitude of the house. Four fea-

tures are extracted and tracked. We can see that KLT with

global motion estimation improves results compared to KLT

alone. The error is always equal to zero whereas KLT gives

a bad estimation when the displacement is larger than 20

or 40 pixels. Figure 5 shows that the number of features lost

during the tracking is more important when the initialization

of KLT is not performed by global motion. As we have seen

in section 3, KLT serves to improve the accuracy of the mo-

tion estimation. To demonstrate the usefulness of KLT, we

trace on the figure 6 the motion estimated by RMRm and the

motion estimated by our algorithm with respect to RMRm’s

iterations for a displacement of 30 pixels of the house with

four features extracted. It can be noticed that KLT improves

the global motion estimated by RMRm. This improvement

appears for a few iteration of RMRm. This characteristic

can be used to set the maximum number of iterations for the

two algorithms in order to accelerate the visual servoing task

without loosing information. In conclusion we can say that

each algorithm corrects errors of the other one.

In order to completely validate the approach we test the

proposed algorithm embedded in the visual servoing closed

loop described section 3. On the film taken during a

flight [13], it can be seen that the proposed algorithm is ro-

bust to bad video transmission. When the image is dam-

aged features prediction provided by global motion estima-

tion allows the visual control system to continue tracking

the target. The processing rate is 20 frames per second with

RMRm set to 4 iterations and KLT set to 10 iterations maxi-

mum. The PC for vision processing is a Pentium 4 3.2GHz.

5 Conclusion

We have proposed an algorithm to track objects without

knowledge on the target. The behavior of this algorithm re-

spects visual control system’s constraints describe before.

It is accurate enough to track small target even in case of

large displacement. It provides a robust tracking to video
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transmission problem when part of images are damaged or

removed. Finally it is fast enough to be embedded in a vi-

sual servoing closed loop. However the robustness to video

transmission problem is not flawless. When a large part of

the image is damaged global motion estimation can fail and

features are lost. Indeed the motion estimation support may

contain a majority of damaged pixels which leads to a bad

motion estimation. In this case undamaged pixels are likely

to be available outside the estimation support. Therefore

we could improve the global motion estimation by detect-

ing damaged pixels and removing them from the estimation

support. In order to retain enough pixels in the estimation

support we could extend the estimation support window to

include more undamaged pixels. Further developments may

also concern the tracking of mobile objects with respect to

the ground.

Figure 3: Displacement of 30 pixels of a house

Figure 4: Error with respect to the amplitude of house’s dis-

placement

Figure 5: Number of feature points with respect to the am-

plitude of motion

Figure 6: Global motion improved by KLT
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