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Abstract

We propose a new approach to recover the relative 
magnitude of Gaussian curvature from multiple images. 
Previous approaches recover the sign of Gaussian cur-
vature from the spatial relationship of points mapped 
onto a sphere. Here, the relative magnitude of Gaussian 
curvature is recovered at each point.  No calibration 
object is required.  Instead, the test object itself is rotated 
in both the vertical and horizontal directions to estimate 
the position coordinates of a marker point. An RBF neu-
ral network learns the mapping of intensities to marker
position coordinates along a virtual sphere. That is, 
self-calibration is performed by moving a marker point.  
The neural network represents the mapping of observed 
image intensities to coordinates on a virtual sphere.  
Self-calibration makes it possible then to recover the 
relative magnitude of Gaussian curvature at each point.  
Experiments on real data are demonstrated. 

1. Introduction 

Surface curvature is useful to describe the structure of 
an object surface. The Gaussian curvature at a point on a 
surface is viewpoint invariant, making it useful for object 
recognition and shape recovery in the computer vision. 

In a previous approach, Woodham [1] proposed a 
method to recover local surface orientation and surface
curvature using photometric stereo. Photometric stereo 
uses multiple images of a test object taken from a fixed 
viewpoint under different conditions of illumination. 

Iwahori Woodham et al. [2] [3] pursued neural net-
work implementations of photometric stereo. A neural 
network replaces an explicit LUT (lookup table) as a way 
to do non-parametric functional approximation.  

Angelopoulou and Wolf [4] and Okatani and Deguchi 
[5] recover the sign of Gaussian curvature from three 
images acquired under different illumination conditions. 
The values of the surface gradient and the light source 
directions themselves are not known explicitly. These 
methods are applicable to diffuse reflectance.

Iwahori et al. [6] [7] proposed a method to recover the 
relative magnitude of Gaussian curvature using an RBF 
neural network.  Local classification of surface curva-
ture also is provided. 

Previous approaches either used a calibration sphere
with the same reflectance properties as the test object or 
assumed diffuse (i.e., Lambertian) reflectance.  A cali-

bration sphere also can be used as a learning object for a 
neural network. Calibration methods require that images 
of a test object and the calibration sphere be acquired 
under the same illumination conditions. 

In this paper, we propose a new method to recover the 
relative magnitude of Gaussian curvature from the test 
object itself without using a calibration sphere.  Except 
that one of the light source directions is aligned with the 
viewing direction, no explicit assumptions need to be 
made either about light source directions or about the 
functional model of surface reflectance. 

Two degree of freedom rotation of the test object itself 
generates the neural network learning data. Four light 
sources and hence four images are used to recover the
relative magnitude of the Gaussian curvature of a test 
object, including a possibly varying color reflectance 
factor. 

2. Principle 

2.1. Empirical constraint 

As originally defined, photometric stereo determines 
the local surface normal vector from observed image
irradiances.  Empirical photometric stereo uses a cali-
bration object of known shape with the same reflectance 
properties as the test object. Under orthographic projec-
tion and distant (i.e., parallel) light sources, three images 
from three different light source directions are sufficient 
also to determine the surface curvature. 

Let the image irradiances at ( objx , objy ) on the test 
object be ( obje1 , obje2 , obje3 ), and at ( sphx , sphy ) on the 
calibration sphere be ( sphe1 , sphe2 , sphe3 ). Under the as-
sumption that the reflectance characteristics of the test 
object and the calibration sphere are the same, the fol-
lowing constraint 

is satisfied when the surface normal at the test object 
point is the same as that at the point on the calibration 
sphere.  The mapping of points on the test object to the 
sphere is key to the recovery of surface curvature.
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2.2.  Gaussian curvature and sign 

An RBF neural network realizes non-parametric func-
tional approximation in multi-dimensional spaces. Here, 
an RBF neural network learns the mapping of 

),,( 321 eee  to ),( sphsph yx for each point on a sphere.
The resulting network generalizes in that it predicts a 
point ),( sphsph yx  on the sphere, given any input value 

),,( 321 eee .  The resulting NN outputs the corre-
sponding ),( sphsph yx on the sphere for each input 

),,( 321 eee from points on the test object. 
The two principal curvatures, 1k  and 2k  are used to 

characterize the local shape of the surface. These are the 
maximum and minimum local curvatures, respectively.
The signs of the two principal curvatures classify surfaces 
into six local surface shape classes (Table 1).  

Table 1.  
.

2k 2k 2k

1k

1k

1k

The signs of the principal curvatures defines six local 
surface shape classes:  convex, concave, convex para-
bolic, concave parabolic, hyperbolic, and plane. When 
we take four local points that surround a point of interest 
on a test object, we can investigate how these points are 
mapped onto a sphere.  The ordering of these mapped
points ),( sphsph yx  on the sphere can be used to re-
cover the Gaussian curvature and to classify the local 
surface according to the six classes given in Table 1. 

2.3. Magnitude of Gaussian curvature 

The local surface curvature class can be determined
from multiple images.  The magnitude of the Gaussian 
curvature provides additional information. The magnitude 
of the Gaussian curvature can be either absolute or rela-
tive.  Absolute values of the Gaussian curvature typically 
are very small.  A relative value can be more useful to 
characterize local surface features. The principle used to 
recover a relative magnitude of the Gaussian curvature is 
as follows: 

Consider the position coordinates ),( sphsph yx of four 
local points mapped onto a sphere. Calculate the area on 
the sphere defined by the four mapped points.  The ratio 
of this area to the corresponding area in the image defines 
a relative magnitude of the Gaussian curvature. 

For a standard configuration of four local image points, 
the corresponding area on the sphere is used as the relative 
magnitude of the Gaussian curvature.  A more detailed 
description of how to recover relative magnitude of
Gaussian curvature for a test object using a calibration 
sphere is given in [7], which shows results for test objects 
with uniform albedo. 

3. Self-Calibration with two DOF rotations 

3.1. Non-Uniform Albedo 

Let j be the j-th light source.  Let the y-axis be the 
vertical direction and let the x-axis be the horizontal di-
rection. Here, ),( yxe j  is the image irradiance and 

),,( zyxj nnnR is the reflectance map of the test object, 
where ),,( zyx nnn  is the surface normal at image point 

),( yx .  For four light source photometric stereo under 
the orthographic projection, the following image irradi-
ance equations hold: 

where ),( yx  is the albedo at point ),( yx . From 
equations (2), can be eliminated as follows: 

(for j =1,2 ,3 ,4) 

The objective now is to determine the mapping of 

)',',','( 4321 eeee  to ),,( zyx nnn  using only the test ob-
ject itself.  

3.2. Rotation of the test object 

The novel idea in this paper is to obtain the training 
data for a neural network from the target object itself.  
Training data are obtained from point correspondences of 
a distinct marker point when the object undergoes a
known rotation.  During rotation, test object image ir-
radiance yxe j ,  is acquired for each light source j.

Suppose the test object is rotated along the horizontal 
axis (x-axis) and along the vertical axis (y-axis) with 
known step.  In particular, suppose the test object is ro-
tated in 5 degree steps from 90 degrees to +90 degrees 
along the horizontal axis and along the vertical axis.  
Images are acquired under each of four light sources. 
Figure 1 illustrates. 

Let r be the distance between the marker point and the 
rotation axis.  Then, r is the radius of rotation.  The test 
object is rotated in a fixed pattern and, with simple geo-
metric calculation, the training set for neural network is 
obtained from the image irradiances of the marker point. 

Figure 1. Two DOF Self-Calibration 
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   For each fixed vertical direction of the marker point, 
the test object is rotated in 5 degree steps in the horizon-
tal direction from 90 degrees to +90 degrees. This
movement is repeated by changing the vertical direction 
in 5 degree steps from 90 degrees to +90 degrees. 
   The Cartesian coordinates ),( yx  of the marker point 
are represented in terms of the radius r and spherical 
coordinates, the azimuth angle a and the zenith angle 
b as follows: 

                     (4) 

To calibrate the starting position, the position of the 
marker point ),( yx  can be calculated from the radius 
r  and rotation angle ).,( ba   The starting position is 
calibrated at vertical direction 0 degrees and horizontal 
direction 0 degrees. 

The radius r  is estimated from an equilateral triangle 
using the position ( 30x , 0y ) in the horizontal direction at 
–30 degrees and the position ( 30x , 0y ) in the horizontal 
direction at 30 degrees as 

                                                  (5) 

3.3. Neural network learning 

Four light sources are used so that four input images 
are acquired for each object pose. To calibrate the initial 
marker point, one light source direction is chosen to be 
aligned with the viewing direction, i.e., the direction to-
wards the camera.  When the surface normal at the 
marker point yx,  points towards the camera and the 
light source, the image irradiance of the marker point 
becomes locally brightest.  For the starting position, the 
surface normal at the marker point is required to point
towards the camera. 

Under orthographic projection, the position of the 
marker is estimated from Equations (4) and (5).  For each 
position of the marker point, the irradiance in each image 

yxe j ,  is obtained and the resulting set of positions and
image irradiances is used for neural network learning.  It 
is possible that observed image irradiances and the cor-
responding point coordinates ),( yx  may include some 
unexpected data such as cast shadow.   Such data are 
removed prior to neural network learning. 

Since the original data contains noise, it is better to 
obtain smooth data for yxe j , .  To smooth image ir-
radiance, a neural network learns the mapping of 

yxe j ,  to yxe j , .  An RBF neural network is used to 
learn input/output data obtained from the marker point at 
each pose of the object. The result predicts irradiance 

objobjj yxe , , given any input point ( objx , objy ).  The 
structure of this neural network is shown in Figure 2. 

Figure 2.  Neural network to obtain smooth je

The neural network generalizes its output with nonlinear 
multi-dimensional interpolation. In the learning during 
self-calibration, the albedo effect is removed using Equa-

tion (1) and the normalized je  are given as the input to 
the neural network.  The learning of the mapping of je
to ),( yx  is also done using an RBF neural network.  
The resulting neural network estimates the position

),( yx  on a virtual sphere. 

Figure 3.  Neural network to estimate Gaussian curvature 

The four mapped coordinates ),( yx  obtained for the 
four local neighboring points on the object are used to 
recover not only the local surface curvature class but also 
the relative magnitude of the Gaussian curvature at each 
point. 

4. Experiments 

4.1. Environment 

Figure 4. Experimental environment 

Figure 4 illustrates our experimental environment. 
The test object is placed on the rotation table as shown in 
Fig.1.  Four light sources are used to illuminate the test 
object.  One light source is aligned with the viewing 
direction.  Four images are obtained under four different 
illuminations for each object pose during rotation.  The 
test object is rotated every 5 degrees between 90 degrees 
and +90 degrees.  The total number of poses under rota-
tion is 37×37.  Thus, a total of 37×37×4 images are taken 
to perform the self-calibration. 

4.2.  Results 

Views of the test object are shown in Figure 5-(a) and 
Figure 6-(a).  To learn the mapping of ( 1e , 2e , 3e , 4e ) to 

),( yx , RBF neural network learning proceeded for 100 
epochs.

The virtual sphere image generalized by the neural 
network of Fig.2 was 256 × 256 pixels.  To learn the
mapping of the neural network of Fig.3, sample points 
were taken every 4 dots apart.   Sample points were
taken every 2 dots apart from the 512 × 512 pixel test 
image.  As a preprocessing smoothing step, the first NN 
in Fig.2 is used to get smooth data
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classes: convex, concave, convex parabolic, concave
parabolic, hyperbolic surfaces and plane.  Fig.7 shows 
the curvature class encoding as gray values.  Fig.5-(c) 
and Fig.6-(c) show the estimated relative magnitude of 
Gaussian curvature.  Again, the result is encoded as a 
gray value.  Brighter points have a larger value of Gaus-
sian curvature, while darker points have a smaller value.  
Fig.6 shows the result when rotation in the vertical direc-
tion is 0 degrees and -30 degrees in the horizontal
direction.  Curvature has similar values at corresponding 
points in the different poses.  The results are qualitatively 
correct except in regions of cast shadow (or dirty regions), 
and the relative magnitude of Gaussian curvature is in-
deed recovered without using a distinct calibration object. 

(a) Test object      (b) Classification    (c) Relative 

                                             magnitude 

Figure 5.  Results for test object  

(a) Test object      (b) Classification    (c) Relative 

                                            magnitude 

Figure 6.  Results for test object  

Figure 7.  Surface classification 

4.3.  Effect of the number of light sources 

Fig. 8 shows the relative magnitude of Gaussian cur-
vature to compare the four light source case (left) with a 
three light source case (middle). The right image shows
one of the input images.  Improvement is observed in the 
four light source case.  More light sources give a more 
robust result. 

Figure 8.  Results for comparison 

5. Conclusion 

This paper demonstrates a new method to recover the
relative magnitude of Gaussian curvature at each visible 
point on a test object without using a separate calibration 
object.  Instead, two degree of freedom rotation of the 
test object is used in self-calibration.  With four input 
images, non uniform albedo is allowed since the effect of 
albedo is removed in neural network learning. Training 
data are obtained from the position of a marker point 
during rotation.  The area surrounding each mapped 
point encodes the relative magnitude of the Gaussian 
curvature.  The implementation described uses four light 
sources.  Experiments are shown for a real object. 

The method fails for points in cast shadow.  Dealing 
with cast shadow and simplification of the implementa-
tion remain as future work 
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