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Abstract

In this paper, we restore a blurred image caused
by defocus of a lens using the shift-invariant Wavelet
transform realized by the RI-Spline Wavelets. In a de-
focus blurred image, the blurring kernel becomes shift-
variant, so the positional frequency representation such
as the Wavelet space is necessary for deblurring them.
For restoring the defocusing blur, we assume that the
blurring kernel of any position in a image can be ob-
tained. In the experiments using synthesized images,
our method using the shift-invariant Wavelet trans-
form shows the better deblurring performance than the
method using the ordinary Wavelet transform. We also
show that our method can be applied to real images
with the help of additional range data.

1 Introduction

A lens camera creates a blurred image when a ob-
ject is not placed in the focused position. Generally
the blurring effect is expressed in the Frequency do-
main as decreases of higher frequency components. In
theory, by restoring these decreased frequency compo-
nents in the Frequency domain, we can restore blurred
images. However, when a image contains noise this
restoration is not easy, because restoring higher fre-
quency components also accentuates noise. It can be
saied that a blurring restoration problem is the prob-
lem how to treat with noise, and many methods to
restore a blurred image have been proposed[2]. Among
them Wiener filtering is one of the best known ap-
proaches to linear image restoration. The Wiener fil-
ter, which is formulated in the Frequency domain, as-
sumes that the blurring kernel is shift-invariant. The
second problem for restoring defocusing blur is that
the blurring kernel varies depending on the image po-
sition, which violates the assumption that the Wiener
filter and many other methods depend on. So the rate
of decreases of the frequency components also varies
depending on the image position. For this reason we
need a positional frequency representation such as the
Wavelet space to restore defocusing blur[4].

In this paper, we restore a blurred image caused
by defocus of a lens using the shift-invariant Wavelet
transform realized by the RI-Spline Wavelets proposed
by Zhang et al.[5][6]. We assume that we have enough
information to calculate the blurring kernel, which is

approximated in this paper by a Gaussian, on each
image point. This information includes the focused
position, aperture size, approximated distances to ob-
jects and so on. On this point our approach is different
from that of Hashimoto & Saito’s which uses the blind
deconvolution approach[4]. In the experiments using
synthesized images, we show that our method using
the shift-invariant Wavelet transform has better per-
formance in shift-variant restoration than the method
using the ordinary Wavelet transform. We also show
that our method can be applied to real images with the
help of additional range data.

2 Shift-Variant Restoration of Defocus-
ing Blur

In this section, we briefly explain the shift-invariant
Wavelet transform realized by the RI-Spline Wavelets.
Then we explain the restoration method of defocusing
blur using the shift-invariant Wavelet transform.

2.1 Shift-Invariant Wavelet Transform

The Wavelet transform is a frequency-space analy-
sis method for which a very efficient computation algo-
rithm has been proposed. However, the Wavelet trans-
form has a shift variance problem[3]. To realize the
shift-invariant Wavelet transform, Zhang et al. pro-
posed the RI-Spline Wavelets[5], then extended to 2-
dimensions[6]. Although we briefly explain the requi-
site information for the succeeding sections, interested
readers should refer to [5][6] for details.

The shift-invariant Wavelet transform using the RI-
Spline Wavelets consists of even (m=4) Spline Wavelets
and odd (m=3) Spline Wavelets. For extension to 2-D,
these two type Wavelets are applied in both column
and row directions. We denote a real (even) transform
in the row direction and an imaginary (odd) transform
in the column direction as RI and so on, then we obtain
RR, RI, IR, and II type transformed results (or coeffi-
cient images). These four coefficient images constitute
the shift-invariant representation.

2.2 Deblurring in the Wavelet Space

In this paper, we assume that the blurring kernel can

be approximated by a 2D Gaussian 1
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Figure 1: Decreasing of Wavelet coefficients of the im-
age blurred by the Gaussian with varying sigma

How the Gaussian σ will affect the decreases of the
RR,IR,II and RI coefficients is investigated experimen-
tally in advance. These experimental results are shown
in Fig.1. In this experiment, we used a image contains
only Gaussian white noise with standard deviation of
10.0, then blurred this image using 2D Gaussian with
varying σ. In Fig1, the abscissa expresses the Gaus-
sian σ. Next, we applied the RI-Spline Wavelets to this
blurred image to obtain 5 level decomposition, then es-
timated how the RR,IR,II and RI coefficients value of
each level decreased in terms of coefficients’ standard
deviation, which are shown as the ordinate of Fig.1.
From Fig1, we see that all the coefficients values de-
crease monotonically with increasing of the Gaussian
σ. The level 1 coefficients, which contain higher fre-
quency components, decrease more rapidly than any
other level coefficients.

In order to restore a blurred image, we restore these
decreased coefficients values in the Wavelet space. To
accomplish this, in this paper we assume σ of the Gaus-
sian blurring kernel on each image point is known.
Under this assumption, we can restore the decreased
RR,IR,II and RI coefficients values following Fig.1. Af-
ter the restoration operation applied to the RR,IR,II
and RI coefficients, the inverse Wavelet transform is
applied to the RR,IR,II and RI coefficient images. In
this way, we can shift-variantly restore the blurred im-
age caused by defocus of a lens.

Using a synthesized images, we experimentally show
that this method can really restore defocusing blur.
The upper image of Fig.2(a) shows a synthesized im-
age which simulates a check-patterned plane tilted 60
degree to the image plane with defocusing blur. The
second row shows the horizontal profile along a sec-
tion near the lowermost part of the upper image. The
size of the original synthesized image is 512 × 512, but
only central 128 × 384 part is shown. As both blur-
ring by image processing and deblurring by the Wavelet
transform have a boundary problem, so the areas near
boundaries should be eliminated to avoid this prob-
lem. In Fig.2 (a)∼(f), all the upper images show 128
× 384 part of images, and all the second row show the
horizontal profiles along the same section of the upper
images. The image shown in Fig.2(a) has a defocus-
ing blur simulating a lens where the central horizontal
line is in-focus. In this setup, the farther from the cen-
tral horizontal line, the larger the Gaussian σ becomes.

Near the uppermost part, the Gaussian σ becomes 2.13
(pixel). Near the lowermost part, the Gaussian σ be-
comes 1.87 (pixel).

Fig.2(b) shows the deblurred image of Fig.2(a) with
5 level decomposition of the shift-invariant Wavelet
transform. Although we see overshootings around
edges, the appearance can be perceived to be almost
identical to the synthesized image before adding defo-
cusing blur, which is omitted in this paper. So we can
say that the Wavelet coefficients restoration method
can restore the defocusing blur quite well when noise
is not contained.

2.3 Denoising Method

An actual image captured by a camera contains
noise. So we should take noise into consideration. By
adding Gaussian white noise with standard deviation
of 3.0 on the image of Fig2(a), we obtain the noisy
synthesized image shown in Fig2(c). The added noise
is so subtle that it is nearly imperceptible in the im-
age. However the profile clearly shows that noise is
contained in the image. Fig.2(d) shows the deblurred
image of Fig.2(c) using the Wavelet coefficients restora-
tion method explained in Sec.2.2. In Fig.2(d), the de-
focusing blur is well restored, however at the same time
noise is so much accentuated that contaminates the re-
stored image. Fig.2(d) calls back the fact that how to
treat noise is very important in blurring restoration.

For removing noise, in this study, we also use
the shift-invariant Wavelet transform, by which the
Wavelet Shrinkage[1] is empowered. We express each
coefficient of RR,IR,II and RI coefficient images as
dRR,dIR,dII ,dRI respectively. For simplicity, we omit
the suffixes which express the decomposed level and
the position in the coefficient images. Here we make a
new coefficient dTI defined by the next equation.

dTI =
√

d2
RR

+ d2
IR

+ d2
II

+ d2
RI

(1)

In this way, we obtain the TI coefficient image which
consists of dTI . Then, the thresholding operation ex-
pressed in Eq.(2) is applied to every coefficient of the
RR,IR,RI and II coefficient images.

ηλ(x) =

{

x(dTI − λ(L))/dTI if dTI > λ(L)
0 if dTI ≤ λ(L)

(2)
Here, L means the decomposition level to which a

coefficient x belongs. As Spline Wavelets are not the
orthonormal Wavelets, which are assumed in [1], but
the bi-orthogonal Wavelets, we vary λ(L) depending
on the decomposition level following Eq.(3).

The λ(L) in Eq.(2) controls denoising ability, in this
study which is evaluated by the standard deviation of
the reconstructed image when the original image con-
tains only Gaussian white noise Apparently the higher
λ(L) we use, the better denoising ability we have. How-
ever, at the same time the higher λ(L) also reduces sig-
nal components, which makes the reconstructed image
overly smoothed. As our aim is deblurring, this over-
smoothing is not desirable. In this study, we exper-
imentally decide the optimal λ(L) following the next
equation.

λ(L) = aS(L)σ (3)
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(a) (b) (c) (d) (e) (f)

(a)Synthesized tilted image with defocus blurring (d)Deblurred image of (c) by the S-I WT
(b)Deblurred image of (a) by the S-I WT (e)Denoised & deblurred image of (c) by the S-I WT
(c)Adding noise on (a) (f)Denoised & deblurred image of (c) by the ordinary WT

Figure 2: Experimental results using synthesized images

Here, σ means the standard deviation of noise es-
timated in the original image. And S(L) means the
standard deviations of coefficients in each decomposed
level, when the original contains only Gaussian white
noise whose standard deviation is 1.0. The higher we
gradually raise a in Eq.(3) from 0, the better denois-
ing ability we get. However, after reaching the certain
value a0, we can barely improve denoising ability. We
used this a0 value for the following experiments.

Fig.2(e) shows the denoised and deblurred image of
Fig.2(c) using the shift-invariant Wavelet transform. In
this experiment, we first applied the denoising method
explained in this section, then applied the Wavelet
coefficients restoration method explained in Sec.2.2.
Compared with Fig.2(d), noise is much reduced. We
can observe that edges are blurred near the uppermost
part. This is because near the uppermost part coef-
ficients are attenuated so much that even small noise
deteriorates signal-noise-ratio, which makes it difficult
to remove noise without affecting signal components.
However, as a whole the deblurred image is perceived
to be proximate to the synthesized non-blurred image,
which is omitted in this paper.

In this paper, we use the shift-invariant Wavelet
transform for shift-variant restoration of defocusing
blur. However, the crucial point in achieving shift-
variant restoration is to use the Wavelet transform in
which positional frequency information is represented.
Here we have a question. How shift-invariance of the
Wavelet transform affects the performance of shift-

variant restoration of defocusing blur? To ascertain
this point, we conducted a comparative experiment us-
ing the ordinary Wavelet transform which lacks shift-
invariance.

Fig.2(f) shows the denoised and deblurred result
using the m = 4 Spline Wavelets as the ordinary
Wavelet transform. In conducting this experiment,
we adjusted the noise-removing ability of the ordinary
Wavelet Shrinkage becomes equal to that of the method
using the shift-invariant Wavelet transform. For this
we adjusted the standard deviation of the denoised im-
age which originally contains only Gaussian white noise
to be equal. For the details of the ordinary Wavelet
Shrinkage, interested reader is directed to [1]. As the
coefficients decreasing of the m = 4 Spline Wavelets is
almost equal to that of the m = 3, 4 RI-Spline Wavelets
shown in Fig.1, we used Fig.1 for coefficients restora-
tion in the Wavelet space. In Fig.2(f), we perceive
that the overall image is more noisy. However this
is not noise remained and accentuated in the deblur-
ring process, but rather pattern noise happened around
edges. In addition, in near the uppermost part the
restoration result is deteriorated. As these deteriora-
tions are not observed in Fig.2(e), we think that the
shift-variance of the Wavelet transform causes these
deteriorations. From these experiments, we see that
the shift-invariance of the Wavelet transform steadily
improves the performance of shift-variant restoration
of defocusing blur.
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(a) In-focus image (iris 16) (b) Defocused image (iris 4) (c) Deblurred image of (b)

Figure 3: Experimental results using real images

3 Experiments Using Real Images

We applied the shift-variant restoration method us-
ing the shift-invariant Wavelet transform explained in
the previous section to real images. Fig.3(a) shows the
256 × 256 in-focus image of the scene where a “Daima-
jin” figure, which is 60cm distant from the camera,
a “Haniwa” figure, which is 135cm distant from the
camera, and a book “Digital Image Processing with
MATLAB”, which is 220cm distant from the camera,
are placed. Fig.3(a) is captured with iris of 16, which
deepens depth of focus. Fig.3(b) shows the defocused
image of the same scene, which is captured with iris of
4. In this image, the “Daimajin” figure is in-focus, and
the book contains so much blur that we can not read
the book title any more.

In order to apply the method in the previous section,
we need to know the Gaussian σ on each image point.
For this, we complemented with range data captured
by EKL3101, of which the resolution is about 12 times
coarser than that of the image data. We omit the de-
tails of the calibration experiments to convert the range
data into the Gaussian σ. We estimated the noise level
of the camera; the standard deviation of noise is 1.19.

Fig.3(c) shows the deblurred image of Fig.3(b) with
5 level decomposition of the shift-invariant Wavelet
transform. Although the readability of the title of the
book is not as well as that of Fig.3(a), we see that
the overall deblurring result becomes acceptable level,
except the strong ringings happened near the head of
the “Daimajin” figure. We think that these ringings
happened because the resolution of the range sensor
EKL3101 is so coarse that we can not get the exact
range information near object boundaries in level 1,2
and 3 decompositions. In order to eliminate these ring-
ings, we think, we have to get the range data as fine as
the level 1 decomposition.

4 Conclusions

In this paper, we proposed the shift-variant restora-
tion method for a blurred image caused by defocus of a
lens using the shift-invariant Wavelet transform. In the

experiments using synthesized images, we showed that
our method using the shift-invariant Wavelet transform
outperformed the method using the ordinary Wavelet
transform. We also showed that our method restored
real defocused images with the help of additional range
data.

In this paper, we assume that the blurring kernel of
any position on a image is known. A digital camera of
late date automatically records some of camera param-
eters. In addition, a digital camera which can get range
information on several points by auto-focusing mech-
anisms, has appeared recently. Although, this range
data is much coarser than the image data, we can com-
pensate this coarseness by segmenting image data. So
we think this assumption has come within reason. Fu-
ture work is to realize the shift-variant restoration of
defocusing blur within the scope of information that
we can get through an actual digital camera.
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