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Abstract.

In this paper, our goal is to reconstruct metric 3D
models for large structures (or other 3D objects) from
uncalibrated images. The internal camera parameters are
estimated by using homographic constraints. More
specifically, we propose to use straight lines and
vanishing points to compute the infinite homography.
However, because vanishing points are very sensitive to
noise, we propose further constraints on homography with
multiple image views. After obtaining the internal camera
parameters, the metric 3D models can then be accurately
reconstructed. Some preliminary results are presented in
this paper.

1. Introduction

Before reconstruct 3D models from images captured by

cameras, camera calibration plays an essential role.

Camera calibration has long been an important research

topic in computer vision. Camera calibration is the process

that models the mathematic relationship between the 3D

coordinates of objects in a scene and their 2D coordinates

on the projected images. The parameters of a camera are

classified into two categories: internal camera parameters

and external camera parameters. Internal camera

parameters define the properties of the geometrical optics

and the external camera parameters define the rotation and

translation of the camera.

There are two main methods to obtain metric 3D

reconstruction from uncalibrated images: (a) using the

transformation matrix or (b) using self-calibration

techniques. The transformation matrix can be obtained by

manually measuring the target objects. However, it is

usually difficult to measure in metric for large structures.

Self-calibration is the process that determines internal

camera parameters directly from uncalibrated images.

Once the process has been completed, it is possible to

obtain metric 3D reconstruction directly from images.

There exist many literatures on self-calibration; e.g.,

Pollefeys and Gool [2], Faugeras [4], Zhang and Faugeras

[5], Hartley and Zisserman [1], Huang and Chen [9].

During the self-calibration process, two robust estimators,

the least median of squares (LMedS) [7][8], and the

random sample consensus (RANSAC) [3][7], are

commonly used to resist the outliers.

In this paper, we propose techniques that employ the

homography constraint for camera self-calibration and

internal camera parameters estimation. Some preliminary

results in metric 3D reconstruction are shown in the

experiment section.

2. Camera Geometry and Camera Model

We use the projective geometry throughout this paper

to describe the perspective projection of the 3D scene onto

2D images. This projection is described as follows:

PXx (1)

where P is a 3×4 projection matrix that describes the

perspective projection process,
TZYX ]1,,,[X and

Tyx ]1,,[x are vectors containing the homogeneous

coordinates of the 3D world coordinate, respectively, 2D

image coordinate.

When the ambiguity on the geometry is metric, (i.e.,

Euclidean up to an unknown scale factor), the camera

projection matrices can be put in the following form:

Rt|RKP (2)

with t and R indicating the position and orientation

of the camera and K , an upper diagonal 3×3 matrix

containing the intrinsic camera parameters:

1

yy

xx

uf

usf

K (3)

where xf and yf represent the focal length divided

by the horizontal and vertical pixel dimensions, s is a

measure of the skew, and ),( yx uu is the principal point.

2.1. Two-View Geometry

Consider two image points x and 'x are projected

from a 3D point X observed by two cameras with

optical centers O and 'O , these five points form a

common plane called the epipolar plane. The points e

and e' are called the epipoles of the two cameras where

the epipole e' is the projection of the optical center O
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of the first camera in the image observed by the second

camera and vise versa. If x and 'x are projection of the

same point, then 'x must lie on the epipolar line

associated with x , hence the epipolar constraint. The

epipolar constraint plays an important role in stereo vision

analysis. When the intrinsic parameters of the cameras are

known, the epipolar constraint can be represented

algebraically by a 3x3 matrix, called the essential matrix.

Otherwise, the epipolar constraint represented by a 3x3

matrix is called the fundamental matrix, F.

2.2. Homography

There exists a relationship between the points from

two images shooting from different viewing angles if the

points lie on the same 3D plane (as shown in Figure 1).

This relationship can be represented as a 3×3

transformation matrix, the planar homography matrix H,

as follows:

Hxx' (4)

where is a scalar

.

Figure 1. The homography induced by a plane.

Expanding above equation, we have
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h h h

(5)

If we have n matched point pairs from the same 3D

plane, the above equation can be used to solve the 3x3

homography matrix H by applying the SVD method [11].

2.3. Infinite Homography

The absolute conic is an imaginary conic situated on

the plane at infinity. It corresponds to the equation

0222 ZYX and 0T (for points
TTZYX ][X ).

If the camera does not change, then the image of the

absolute conic and its dual
*
will also stay the

same for all views, as shown in Figure 2. These are

represented by the following matrices:
1KK T (6)

TKK* (7)

with K the upper triangular matrix containing the

internal camera parameters.

Figure 2. An absolute conic on the infinity plane.

The constraint that the dual image of the absolute

conic should be the same for all the views can then be

expressed as follows:

ij

TT

ij

T HHKKHKK (8)

Scaling det ijH to one eliminates the scale factor .

Therefore, once ijH is known, Equation 8 represents a

set of linear equations from which the elements of TKK

can be obtained. The internal camera parameters can then

be obtained through Cholesky factorization.

From Equation 8, we should compute the infinite

homography before we estimate the internal camera

parameters. There are two methods to compute the infinite

homography. The first method requires three

corresponding vanishing points and the fundamental

matrix, and the second method requires one corresponding

vanishing point, one vanishing line and the fundamental

matrix [1].

3. Self-Calibration

Self-calibration is the process that computes the

metric properties of the camera and/or the scene from a set

of uncalibrated images. The key concept for self-

calibration is the absolute conic discussed in Section 2.3.

The absolute conic stays constant under all rigid

transformations of space and it encodes the metric

structure of the scene (i.e., Euclidean structure up to scale

).

3.1. Computing Vanishing Points and Lines

In order to compute the infinite homography, we

need to accurately compute the vanishing points and

vanishing lines. Unfortunately, the process to compute the

vanishing points and the vanishing lines is very sensitive

to noise (outliers). Therefore we employ a robust

estimator, LMedS [7][8], to compute the vanishing points.

The procedure to compute the vanishing points is

described as follows.

1. Select multiple points that form a line.

2. Compute the line using LMedS. As shown in Figure

3(a), 10 points are used to fit one line.

3. Compute the intersection of lines from Step 2 with

LMedS. As shown in Figure 3(b), the vanishing

point is determined by 8 lines.

X
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(a) (b)

Figure 3. A vanishing point.

The vanishing line can be determined by two or more

vanishing points using LMedS. After the vanishing points

or vanishing lines are obtained, the infinite homography

can be estimated by Equation 8.

3.2. Computing internal camera parameters

For simplicity, let the internal camera parameters be

constant, we set the aspect ratio to 1, the skew to 0, and

the principle point to (0,0,1)
T
[9],. Once the infinite

homography is estimated, the stratified algorithm [2],
T

i

T

i

T

11 HKKHKK , can be used to compute K .

TKK*
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(9)

Here, i ( ni ,...,2 ) denotes the index of images. For

example, 12H represents the infinite homography from

the 1
st
image and the 2

nd
image. Equation 9 is then used to

estimate the focal length f.

3.3. Constraints with Multiple Views

The internal camera parameters will not be accurate

when the infinite homography i1H is not accurate

enough. We propose to apply some constraints to filter

out singular cases while estimating the infinite

homography i1H .

The relationship of the homography among multiple

image views can be depicted as in Figure 4.

Figure 4. The relationships of homography among five

images.

In Fugure 4, the corresponding 2D coordinates of a

fixed 3D point X projected in five images are

''','',', xxxx and ''''x . The homography from the 1
st

image to the 2
nd
image is denoted as 12H ; i.e., xHx 12' .

Similarly, the homography 151413453423 ,,,,, HHHHHH

can be defined as follows:

12 23 34 45

23 12

34 23 12

45 34 23 12

' '' ' ''' '' '''' '''

''

'''

''''

or

x H x x H x x H x x H x

x H H x

x H H H x

x H H H H x

The result is that we can obtain additional constraints

from the formation of the homography matrices from

multiple views; e.g.,

1223344515

12233414

122313

HHHHH

HHHH

HHH

These resulting constraint equations can help to filter

out some singular cases while estimating the infinite

homography.

4. Experimental Results

The first experiment employs the stratified algorithm

to estimate the internal camera parameters. First, the

vanishing points are obtained. Then the infinite

homography is obtained by using the resulting vanishing

points. Finally, the internal camera parameters are

computed from the infinite homography. In reality, the

points on the vanishing lines in images can be detected

automatically. For simplicity, points on the vanishing lines

in images are detected manually in this experiment. Figure

5 shows the original images and the results after detecting

vanishing points and vanishing lines (in blue). The infinite

homography can then be computer by Equation 8.

Figure 5. Computing the intersections of lines,

vanishing points and vanishing lines.

As discussed in Section 3.2, for simplicity, we set the

aspect ratio to 1, skew to 0, and the principle point to

(0,0,1)
T
. After computing the infinite homography, the

internal camera parameter is obtained by Equation 9 as the

estimated focal length to be 892.3304.
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Figure 6. Two views in a controlled environment.

Figure 7. Reconstruction result.

Figure 6 shows two images of the same cube with

markings from different angles in a controlled

environment. The corresponding points are depicted in

blue. The corresponding metric 3D reconstruction is

shown in Figure. 7.

Figure 8. Two views of a structure.

Figure 9. Metric 3D reconstruction from 2 views.

Figure 8 shows two images of the same structure from

different angles. The corresponding points are depicted in

blue. The corresponding metric 3D reconstruction is

shown in Figure 9.

5. Conclusion

The goal of this paper is to reconstruct metric 3D

models for large structures from uncalibrated images. We

propose to use straight lines and vanishing points to

compute the infinite homography and then estimate the

internal camera parameters. However, because vanishing

points are very sensitive to noise, we propose further

constraints on homography with multiple image views.

After obtaining the internal camera parameters, the metric

3D models can then be accurately reconstructed. Our

prelimenary experimental results show that although we

try to employ some existing robust methods to overcome

the noise/outliers problem, the estimation of the internal

camera parameters is still very sensitive to noise. Our

future woks focus on improving the techniques for more

robust and stable estimation in camera self-calibration.
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